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Notations

@ S=C[x,y,z] = ®>0Sr, and f € Sy.
@ J; = (f, 1y, f;) the Jacobian ideal of f.
@ The graded Milnor algebra of f is given by:

M(f) = S/Jf = @rEOM(f)F

@ For any graded module M = ©s>5,Ms over a C-algebra of
finite type, define the Poincaré Series by

P(M)(t) = > (dime Mg)t°.

$>5p
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Let C c IP? : f = 0 be a curve having an isolated singularity at a
point P, and let g(u, v) the local equation of f at P, then

@ the Milnor number of f at P is given by

/L(C, P) dimg — O
JQ

@ the Tjurina number of f at P is given by

7(C, P) = dim¢ (goj 1
»vg

@ The Milnor (Tjurina) number of the curve C is the sum of
the Milnor (Tjurina) numbers of all the singularities of C.
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@ Node or A; singularity Sk
M(Cv'D):T(C,P):1 gl o) = ' + o

Node

v

@ Ordinary triple point
or Dy, singularity
w(C,P) =7(C,P) = 4.

alu o) w' + 7

Triple Point

A
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@ Let r(C, P) be the number of irreducible branches of the
germ (C, P), the j-invariant of C at the point P is defined
by

1

5(C.P) =3

(u(C,P)+r(C,P)—1).
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@ Let r(C, P) be the number of irreducible branches of the
germ (C, P), the j-invariant of C at the point P is defined
by

&am:gmam+mam—u

@ For anode, r =2, and hence the § = 1.

@ For an ordinary triple point r = 3, and hence the 6 = 3.
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@ Let r(C, P) be the number of irreducible branches of the
germ (C, P), the j-invariant of C at the point P is defined
by

&am:gmam+mam—u

@ For anode, r =2, and hence the § = 1.

@ For an ordinary triple point r = 3, and hence the 6 = 3.

@ The genus g of C is given by
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@ Let AR(f) = @,>0AR(f), be a graded S-module, where
AR(f), = {(a,b,c) € S2 : afy + bf, + cf, = 0}.
KR(f) c AR(f) the submodule of Koszul relations or trivial
relations spanned by the relations of the form
(f)f + (—=f;)f; = 0. The quotient module
ER(f) = AR(f)/KR(f) is called the module of nontrivial
syzygies or essential relations.
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Goals

@ Relation between the Milnor algebra and the singularities
of the curve C c P?: f = 0.
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Goals

@ Relation between the Milnor algebra and the singularities
of the curve C c P?: f = 0.

@ Relation between the Hodge theory of the complement
U = P?\ C and the singularities of C.

10/41
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Koszul Complex

Let QF = {Zl craxi, A+ A dX,'p},
where | = (iy,--- ,ip) , with Xj € {x,y,z},and ¢, € C[x, y, Z].

For homogeneous polynomials fy, fi, f», the Koszul complex is
given by

K*(fy,fi, ) : 0 —» Q0 5 Q! 402 0% 50

where w = fodx + fidy + fdz.

12/41
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Example
Let f € Sn, , fy, f; the partial derivatives of f, then,

K*(F) = K*(fr, f, f;) : 0 — Q0 28 @1 20, 92 4, 03 0

with w = df = fydx + f,dy + f,dz, is the Koszul Complex of the
partial derivatives of f.

13/41
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Let f € Sn, , fy, f; the partial derivatives of f, then,

K*(F) = K*(fr, f, f;) : 0 — Q0 28 @1 20, 92 4, 03 0

with w = df = fydx + f,dy + f,dz, is the Koszul Complex of the
partial derivatives of f.

im(Q2 22 Q3) = J;, and therefore H3(K*(f)) = M(f), and
H?(K*(f)) = ER(f), in particular H*(K*(f))x.3 = M(f)x, and
H2(K*(f)ks2 = ER(f)x for k > 0.

13/41
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Koszul Complex and Singularities

Proposition (Kyoji Saito, 1974)

H3—k(K*(f)) =0 for k > d|m(Z) = 17

where K*(f) is the Koszul complex of the partial derivatives of f.

14/41
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Smooth Case

fe Sy, C c P?:f=0asmooth curve, then H3K(K*(f)) = 0
for all k > 0, and the Poincaré series is completely determined,
namely

s . (1 o tN71)3
P(M(f))(t) = t>P(H(K*(£))(t) = NG

15/41
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Smooth Case

fe Sy, C c P?:f=0asmooth curve, then H3K(K*(f)) = 0
for all k > 0, and the Poincaré series is completely determined,
namely

s . (1 o tN71)3
P(M(f))(t) = t>P(H(K*(£))(t) = NG

The Poincaré series depends only of the degree of f, and it is a
polynomial of degree 3N — 6 with the property

M(f)k = M(f)an—6—«-

15/41
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Singular Case

If C c P? has only isolated singularities, then H3~%(K*(f)) = 0
for k > 1, and the nonzero cohomology groups are related as
follows:

(1 o th1 )3

tNP(HA(K*(f)(1) = P(H}(K*(H)(1) - £ e

16/41
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Proposition (Choudary, Dimca, 1994)

The sequence dim M(f)x decreases for k > 2(N — 2) and
becomes constant for k > 3N — 5. More precisely, for

k > 3N -5, dim M(f)x = 7(C).

17/41
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Proposition (Choudary, Dimca, 1994)

The sequence dim M(f), decreases for k > 2(N — 2) and
becomes constant for k > 3N — 5. More precisely, for
k > 3N — 5, dim M(f), = 7(C).

In 2011, Dimca and Sticlaru introduced three integers, the co-
incidence threshold ct(C), the stability threshold st(C), and the
minimal degree of syzygies madr(C).

17/41
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(i) ct(C) = max{q: dim M(f), = dim M(fs)x for all k < q},
with f; € Sy such that Cs: fs = 0 is a smooth curve in P2.

18/41
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N -2 <ct(C) <3(N -2),
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(i) ct(C) = max{q: dim M(f), = dim M(fs)x for all k < q},
with f; € Sy such that Cs: fs = 0 is a smooth curve in P2.
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We have:
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Nodal Curves

Proposition (Dimca, Sticlaru, 2011)

Let C : f = 0 be a nodal curve of degree N inP?2. Then one has
ct(C) > 2N — 4, and

.
dim M(f)an_3 = n(C) + Z gj
j=1

where n(C) = 7(C) is the total number of nodes of C and g; are
the genera of the irreducible components C; of C whose
numberisr.

19/41



Koszul Complexes and Singularities
0O00000@0000000

Example

Let C:f=x(x3+y3+2%)=0.
dimM(f)on_3=3+1=4,st(C) <3N-5=7and
ct(C) > 2N — 4 = 4. By Singular,

P(M(f))(t) =1+3t+ 662+ 712 +6t* + 4 +3(t8 + ' +--.),

and hence ct(C) = 4 and st(C) = 6.

20/41
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Proposition (Dimca, Sticlaru, 2011)

Let C : f = 0 be nodal curve of degree N inP?2. Then one has
ct(C) > 2N — 4, and

r
dim M(f)an_3 = n(C) + Z gj
j=1

where n(C) = 7(C) is the total number of nodes of C and g; are
the genera of the irreducible components C; of C whose
numberisr.

Corollary (Dimca, Sticlaru, 2011)

If C is a rational nodal curve, then the Poincaré series of the
Milnor algebra is completely determined, and st(C) < 2N — 3
unless C is a generic line arrangement then st(C) = 2N — 4.

21/41



Koszul Complexes and Singularities
00000000 @00000

Example

Let C: f=xyz(x+y + z) =0. C has 6 nodes, P(M(f)) is all
determined and we have st(C) = 2N — 4 = 4 and ct(C) > 4.
Therefore

P(M(f))(t) =1+3t+62 + 72 +6(t* + 2+ ---),

which implies that ct(C) = 4.
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Example

Let C: f=xyz(x+y + z) =0. C has 6 nodes, P(M(f)) is all
determined and we have st(C) = 2N — 4 = 4 and ct(C) > 4.
Therefore

P(M(f))(t) =1+3t+62 + 72 +6(t* + 2+ ---),

which implies that ct(C) = 4.

Example

Let C: f=xN"1y + zN =0, then xf, — (N — 1)yf, = 0.
Therefore mdr(C) =1,and ct(C) =N -1 < 2N — 4.

22/41



Koszul Complexes and Singularities
0000000008000 0

Question: What happens in the general case?
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Question: What happens in the general case?

Generalization of these results to curves with ordinary double
and triple points

23/41
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Curves with Ordinary Double and Triple Points

Theorem

Let C be a plane curve inP? given by f =0, f € Sy with n
nodes (A1) and t triple points (Ds), then T = n+ 4t. Let
C=Uj-1,GC;, U=P?\C, and g; = 9(C;).

24/41
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Curves with Ordinary Double and Triple Points

Theorem

Let C be a plane curve inP? given by f =0, f € Sy with n
nodes (A1) and t triple points (Ds), then T = n+ 4t. Let
C=Uj-1,GC;, U=P?\C, and g; = 9(C;).

(A) 0 <dimM(f)on-3 — 7 < >[4 gj. In particular,
(iy Ifall gi =0, one has dim M(f)on_3 = T, i.e. st(C) < 2N — 3.

(i) dimM(f)ony—z — 7 = 2;21 g; if and only if H?(U) satisfies
F2H?(U) = P?H?(U).

(B) max(r—1+t—=> 7 yg,r—1) <dmER(fly-2 <r—1+t.
In particular, dim ER(f)y_o = r — 1+t ifgj = 0 for all j.

24/41
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Example

Let C:f=(x®+y3+2%)3 +(x®+2y%+32%)%3 =0. Cisthe
union of 3 smooth curves, and have 9 triple points as
singularities. Using Singular we can find dim M(f)1g = 7 = 36.
Hence, one has a strict inequality in (A)

3
dmM(f)ie—T7=0<3=>) g
j=1

Moreover, the inequalities in (B) in this case are

8<8<9+2.

25/41
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Example

Consider the line arrangements:
Pappus configuration A : f =0

xyz(x—=y)(y—2z)(x—y—2)(2x+y+2)(2x+y—2z)(-2x+5y—2) = 0
and A, : g=0
xyz(x+y)(x+32)(y+2z)(x+2y+z)(x+2y+3z)(4x+6y+6z) = 0.

Both arrangements have N =n=1t=9,
P(M(£))(t) — P(M(g))(t) = 1" # 0, and ct(V(f)) = 11 and
ct(V(g)) = 12.

26/41
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Consider the curve C: f = (x2 — y2)(y? — 22)(x2 —22) = 0. C
is the union of 6 lines, i.e gi=0fori=1,--- /6. Hence,
dimM(f)g = 4(4)+3 =19 =7(C), and

dmER(f)s =6—-1+4=09.

27/41
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Pure Hodge Structures

Definition
A (pure) Hodge structure of weight m on a finite dimensional
Q-vector space H consists of a decomposition of Hc = H® C
into a direct sum of complex subspaces HP:9, such that:

(i) Hc = @p+q:m HP-

(i) HP.9 = HIP

29/41
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Pure Hodge Structures

Definition

A (pure) Hodge structure of weight m on a finite dimensional
Q-vector space H consists of a decomposition of Hc = H® C
into a direct sum of complex subspaces HP:9, such that:

(I) Hc = @p—|—q:m HP4
(i) HPG — HaP

v

There exists a filtration on H, called the Hodge Filtration, given
by
FPH = EH Ho™.

s>p

29/41
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Mixed Hodge Structures

A mixed Hodge structure (MHS) is a triplet (H, W, F) where:
() His a finite dimensional Q-vector space;

(i) W is a finite increasing filtration called the weight filtration
OcWsHCWgyHC---Cc WiH=H

(iii) F is a finite decreasing filtration on H¢ called the Hodge
filtration

H>FPH> FPH'HS ...5 FIH >0

such that (Gr/VH, F) is a Hodge structure of weight k for
all k.

30/41
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The induced filtration is given by
FP(Gr' H)c = (FPHe N WiHg + Wi 1He)/ W1 He.

When (H, W, F) is a MHS we can define the mixed Hodge num-
bers by

hP9(H) = dim GrEGr ,Hc

31/41
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Theorem (Deligne 1971)

Let X be a quasi-projective variety, then H*(X, Q) has a MHS,
such that for all m > 0,

@ The weight filtration W on H™ (X, Q) satisfies

0= W_1 C WoC"'C W2m:Hm(X;Q);

form > n =dim X, we also have Wo, = --- = Wop;

@ The Hoage filtration F on H™(X; C) satisfies
H™(X;C)=F%> ... > F™1 = 0. For n = dim X, we also
have F"'t1 = 0.

32/41
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Theorem (Deligne, 1971)

@ If X is a smooth variety, then Wp,_1H™(X,Q) =0 (i.e., all
weights on H™(X; Q) are > m) and
WnH™(X,Q) = j*H™(X, Q) for any compactification
Ji: X = X:

@ If X is a projective variety, then WnH™(X,Q) = H™(X,Q)
(i.e., all weights on H™(X; Q) are < m) and W,,,_{ = kerp*
for any proper map p : X — X with X smooth.

33/41
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Theorem (Deligne, 1971)

@ If X is a smooth variety, then Wp,_1H™(X,Q) =0 (i.e., all
weights on H™(X; Q) are > m) and
WnH™(X,Q) = j*H™(X, Q) for any compactification
Ji: X = X:

@ If X is a projective variety, then WnH™(X,Q) = H™(X,Q)
(i.e., all weights on H™(X; Q) are < m) and W,,,_{ = kerp*
for any proper map p : X — X with X smooth.

If X is a smooth projective variety, then the cohomology group
H™(X,Q) has a pure Hodge structure of weight m, for all
m> 0.

33/41
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Hodge Theory of Plane Curve Complement

Let C c PP? be a curve defined by f = 0 for f € Sy, and U =
P2\ C.

In particular, for m = 2, the Hodge filtration is given by:

H3(U)=F=F'>F2> F3=0

34/41
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Theorem

Let C c P? be a curve of degree N, and U = P? \ C. Suppose
that C has only n nodes and't triple points. Set g; = g(C;),
where the {C;}; are the irreducible components of C whose
number is r. Then one has

dim GrtH?(U, C) Zgj

and
(N-1)(N-2)

dim Gr2H?(U,C) = >

-t

35/41
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The weight filtration on H?(U) is:

0C Wsc W, =H?U).
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Remark

The weight filtration on H?(U) is:

0c Wsc W, =H?(U).

(i) WP (HR(U)) = h2(H2(U)) = Yy g)-
(i) 2(HA(U)) = BEUN=E) s gt

(i) bo(U) = % + Z/:1 gj — t, where bo(U) denotes
the second Betti number of the complement U.

In particular, it follows that H?(U) is pure of type (2,2) when g; =
0 for all j, a well known property in the case of line arrangements.

36/41



Hodge Theory
[e]e]e] le]elele)

Example

gi=0foreveryi=1,---6, N =6,
and t = 4. Then, dim H' = 5, and we
get dim GriH2(U,C) = dim & =

and dim Gr2H?(U, C) = dim F2 = 6.
Hence bx(U) = 6. ol P ~
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C: xyz(xX2y + X2z + y?x + y?z + z°x + z%y) = 0.t has 3 triple
points and 3 nodes. We have g1 =g> =93 =0,94 =1, N=6.
Then dim H'(U) = 3, dim GriH?(U, C) = 1 and

dim Gr2H?(U,C) = 7, and bo(U) =1+ 7 = 8.
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Theorem

Let C c P? be a curve of degree N, and U = P? \ C. Suppose
that C has only n nodes and't triple points. Set g; = g(C;),
where the {C;}; are the irreducible components of C whose
number is r. Then one has

dim GrtH?(U, C) Zgj

and
(N-1)(N-2)

dim Gr2H?(U,C) = >

-t
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Generalization

C c P? with isolated singularities, then

dim GriH?(U, C) Zg,
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Generalization

C c P? with isolated singularities, then

dim GriH?(U, C) Zg,

Theorem

Let C c P? be a curve of degree N having only ordinary
singular points of multiplicity at most 4. If U = P? \ C, then one
has

(N-1)(N-2)

dim Gr2H?(U,C) = >

—t—3s+ b2

40/ 41
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Thank you for your attention!
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