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Introduction Koszul Complexes and Singularities Hodge Theory

Notations

S = C[x , y , z] = ⊕r≥0Sr , and f ∈ SN .

Jf = (fx , fy , fz) the Jacobian ideal of f .

The graded Milnor algebra of f is given by:

M(f ) = S/Jf = ⊕r≥0M(f )r .

For any graded module M = ⊕s≥s0Ms over a C-algebra of
finite type, define the Poincaré Series by

P(M)(t) =
∑
s≥s0

(dimC Ms)ts.
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Introduction Koszul Complexes and Singularities Hodge Theory

Let C ⊂ P2 : f = 0 be a curve having an isolated singularity at a
point P,
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Let C ⊂ P2 : f = 0 be a curve having an isolated singularity at a
point P, and let g(u, v) the local equation of f at P, then

the Milnor number of f at P is given by

µ(C,P) = dimC
OP

Jg
.

the Tjurina number of f at P is given by

τ(C,P) = dimC
OP

(g, Jg)
.

The Milnor (Tjurina) number of the curve C is the sum of
the Milnor (Tjurina) numbers of all the singularities of C.
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Introduction Koszul Complexes and Singularities Hodge Theory

Example
Node or A1 singularity
µ(C,P) = τ(C,P) = 1.

Example
Ordinary triple point
or D4 singularity
µ(C,P) = τ(C,P) = 4.
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Introduction Koszul Complexes and Singularities Hodge Theory

Let r(C,P) be the number of irreducible branches of the
germ (C,P), the δ-invariant of C at the point P is defined
by

δ(C,P) =
1
2

(µ(C,P) + r(C,P)− 1).

Example
For a node, r = 2, and hence the δ = 1.
For an ordinary triple point r = 3, and hence the δ = 3.

The genus g of C is given by

g =
(N − 1)(N − 2)

2
−
∑

k

δ(C,Pk ).
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Introduction Koszul Complexes and Singularities Hodge Theory

Let AR(f ) = ⊕r≥0AR(f )r be a graded S-module, where
AR(f )r = {(a,b, c) ∈ S3

r : afx + bfy + cfz = 0}.
KR(f ) ⊂ AR(f ) the submodule of Koszul relations or trivial
relations spanned by the relations of the form
(fi)fj + (−fj)fi = 0. The quotient module
ER(f ) = AR(f )/KR(f ) is called the module of nontrivial
syzygies or essential relations.

9 / 41



Introduction Koszul Complexes and Singularities Hodge Theory

Goals

Relation between the Milnor algebra and the singularities
of the curve C ⊂ P2 : f = 0.

Relation between the Hodge theory of the complement
U = P2 \ C and the singularities of C.
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Introduction Koszul Complexes and Singularities Hodge Theory

Koszul Complex

Let Ωp = {
∑

I cIdxi1 ∧ · · · ∧ dxip},
where I = (i1, · · · , ip) , with xij ∈ {x , y , z}, and cI ∈ C[x , y , z].

For homogeneous polynomials f0, f1, f2, the Koszul complex is
given by

K ∗(f0, f1, f2) : 0→ Ω0 ω∧−−→ Ω1 ω∧−−→ Ω2 ω∧−−→ Ω3 → 0

where ω = f0dx + f1dy + f2dz.
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Introduction Koszul Complexes and Singularities Hodge Theory

Example
Let f ∈ SN , fx , fy , fz the partial derivatives of f , then,

K ∗(f) = K ∗(fx , fy , fz) : 0→ Ω0 ω∧−−→ Ω1 ω∧−−→ Ω2 ω∧−−→ Ω3 → 0

with ω = df = fxdx + fydy + fzdz, is the Koszul Complex of the
partial derivatives of f .

Remark

im(Ω2 ω∧−−→ Ω3) = Jf , and therefore H3(K ∗(f)) = M(f ), and
H2(K ∗(f)) = ER(f ), in particular H3(K ∗(f))k+3 = M(f )k , and
H2(K ∗(f))k+2 = ER(f )k for k ≥ 0.
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Koszul Complex and Singularities

Proposition (Kyoji Saito, 1974)

Let Σ = V (fx , fy , fz) ⊂ P2 then,

H3−k (K ∗(f)) = 0 for k > dim(Σ) + 1,

where K ∗(f) is the Koszul complex of the partial derivatives of f .
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Introduction Koszul Complexes and Singularities Hodge Theory

Smooth Case

f ∈ SN , C ⊂ P2 : f = 0 a smooth curve, then H3−k (K ∗(f)) = 0
for all k > 0, and the Poincaré series is completely determined,
namely

P(M(f ))(t) = t−3P(H3(K ∗(f)))(t) =
(1− tN−1)3

(1− t)3 .

Remark
The Poincaré series depends only of the degree of f , and it is a
polynomial of degree 3N − 6 with the property
M(f )k = M(f )3N−6−k .
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Introduction Koszul Complexes and Singularities Hodge Theory

Singular Case

If C ⊂ P2 has only isolated singularities, then H3−k (K ∗(f)) = 0
for k > 1, and the nonzero cohomology groups are related as
follows:

tNP(H2(K ∗(f)))(t) = P(H3(K ∗(f))(t)− t3 (1− tN−1)3

(1− t)3 .
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Introduction Koszul Complexes and Singularities Hodge Theory

Proposition (Choudary, Dimca, 1994)

The sequence dim M(f )k decreases for k ≥ 2(N − 2) and
becomes constant for k ≥ 3N − 5. More precisely, for
k ≥ 3N − 5, dim M(f )k = τ(C).

In 2011, Dimca and Sticlaru introduced three integers, the co-
incidence threshold ct(C), the stability threshold st(C), and the
minimal degree of syzygies mdr(C).

17 / 41



Introduction Koszul Complexes and Singularities Hodge Theory

Proposition (Choudary, Dimca, 1994)

The sequence dim M(f )k decreases for k ≥ 2(N − 2) and
becomes constant for k ≥ 3N − 5. More precisely, for
k ≥ 3N − 5, dim M(f )k = τ(C).

In 2011, Dimca and Sticlaru introduced three integers, the co-
incidence threshold ct(C), the stability threshold st(C), and the
minimal degree of syzygies mdr(C).

17 / 41



Introduction Koszul Complexes and Singularities Hodge Theory

Definition
(i) ct(C) = max{q : dim M(f )k = dim M(fs)k for all k ≤ q},

with fs ∈ SN such that Cs: fs = 0 is a smooth curve in P2.

(ii) st(C) = min{q : dim M(f )k = τ(C) for all k ≥ q}.

(iii) mdr(C) = min{q : ER(f )q 6= 0}.

We have:
ct(C) = mdr(C) + N − 2,
N − 2 ≤ ct(C) ≤ 3(N − 2),
st(C) ≤ 3N − 5.
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Introduction Koszul Complexes and Singularities Hodge Theory

Nodal Curves

Proposition (Dimca, Sticlaru, 2011)

Let C : f = 0 be a nodal curve of degree N in P2. Then one has
ct(C) ≥ 2N − 4, and

dim M(f )2N−3 = n(C) +
r∑

j=1

gj

where n(C) = τ(C) is the total number of nodes of C and gj are
the genera of the irreducible components Cj of C whose
number is r .
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Introduction Koszul Complexes and Singularities Hodge Theory

Example

Let C : f = x(x3 + y3 + z3) = 0.
dim M(f )2N−3 = 3 + 1 = 4, st(C) ≤ 3N − 5 = 7 and
ct(C) ≥ 2N − 4 = 4. By Singular,

P(M(f ))(t) = 1 + 3t + 6t2 + 7t3 + 6t4 + 4t5 + 3(t6 + t7 + · · · ),

and hence ct(C) = 4 and st(C) = 6.
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Introduction Koszul Complexes and Singularities Hodge Theory

Proposition (Dimca, Sticlaru, 2011)

Let C : f = 0 be nodal curve of degree N in P2. Then one has
ct(C) ≥ 2N − 4, and

dim M(f )2N−3 = n(C) +
r∑

j=1

gj

where n(C) = τ(C) is the total number of nodes of C and gj are
the genera of the irreducible components Cj of C whose
number is r .

Corollary (Dimca, Sticlaru, 2011)
If C is a rational nodal curve, then the Poincaré series of the
Milnor algebra is completely determined, and st(C) ≤ 2N − 3
unless C is a generic line arrangement then st(C) = 2N − 4.
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Introduction Koszul Complexes and Singularities Hodge Theory

Example

Let C : f = xyz(x + y + z) = 0. C has 6 nodes, P(M(f )) is all
determined and we have st(C) = 2N − 4 = 4 and ct(C) ≥ 4.
Therefore

P(M(f ))(t) = 1 + 3t + 6t2 + 7t3 + 6(t4 + t5 + · · · ),

which implies that ct(C) = 4.

Example

Let C : f = xN−1y + zN = 0, then xfx − (N − 1)yfy = 0.
Therefore mdr(C) = 1, and ct(C) = N − 1 < 2N − 4.
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Introduction Koszul Complexes and Singularities Hodge Theory

Question: What happens in the general case?

Generalization of these results to curves with ordinary double
and triple points
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Introduction Koszul Complexes and Singularities Hodge Theory

Curves with Ordinary Double and Triple Points

Theorem

Let C be a plane curve in P2 given by f = 0, f ∈ SN with n
nodes (A1) and t triple points (D4), then τ = n + 4t . Let
C =

⋃
j=1,r Cj , U = P2 \ C, and gj = g(Cj).

(A) 0 ≤ dim M(f )2N−3 − τ ≤
∑r

j=1 gj . In particular,

(i) If all gi = 0, one has dim M(f )2N−3 = τ , i.e. st(C) ≤ 2N − 3.

(ii) dim M(f )2N−3 − τ =
∑r

j=1 gj if and only if H2(U) satisfies
F 2H2(U) = P2H2(U).

(B) max(r − 1 + t −
∑r

j=1 gj , r − 1) ≤ dim ER(f )N−2 ≤ r − 1 + t .
In particular, dim ER(f )N−2 = r − 1 + t if gj = 0 for all j .
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Introduction Koszul Complexes and Singularities Hodge Theory

Example

Let C : f = (x3 + y3 + z3)3 + (x3 + 2y3 + 3z3)3 = 0. C is the
union of 3 smooth curves, and have 9 triple points as
singularities. Using Singular we can find dim M(f )16 = τ = 36.
Hence, one has a strict inequality in (A)

dim M(f )16 − τ = 0 < 3 =
3∑

j=1

gj .

Moreover, the inequalities in (B) in this case are

8 ≤ 8 ≤ 9 + 2.
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Example
Consider the line arrangements:
Pappus configuration A1 : f = 0

xyz(x−y)(y−z)(x−y−z)(2x+y+z)(2x+y−z)(−2x+5y−z) = 0,

and A2 : g = 0

xyz(x+y)(x+3z)(y+z)(x+2y+z)(x+2y+3z)(4x+6y+6z) = 0.

Both arrangements have N = n = t = 9,
P(M(f ))(t)− P(M(g))(t) = t12 6= 0, and ct(V (f )) = 11 and
ct(V (g)) = 12.

26 / 41



Introduction Koszul Complexes and Singularities Hodge Theory

Example

Consider the curve C : f = (x2 − y2)(y2 − z2)(x2 − z2) = 0. C
is the union of 6 lines, i.e gi = 0 for i = 1, · · · ,6. Hence,
dim M(f )9 = 4(4) + 3 = 19 = τ(C), and
dim ER(f )4 = 6− 1 + 4 = 9.
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Pure Hodge Structures

Definition
A (pure) Hodge structure of weight m on a finite dimensional
Q-vector space H consists of a decomposition of HC = H ⊗ C
into a direct sum of complex subspaces Hp,q, such that:

(i) HC =
⊕

p+q=m Hp,q

(ii) Hp,q = Hq,p

There exists a filtration on HC, called the Hodge Filtration, given
by

F pHC =
⊕
s≥p

Hs,m−s.
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Mixed Hodge Structures

Definition
A mixed Hodge structure (MHS) is a triplet (H,W ,F ) where:

(i) H is a finite dimensional Q-vector space;
(ii) W is a finite increasing filtration called the weight filtration

0 ⊂WsH ⊂Ws+1H ⊂ · · · ⊂WtH = H

(iii) F is a finite decreasing filtration on HC called the Hodge
filtration

H ⊃ F pH ⊃ F p+1H ⊃ · · · ⊃ F qH ⊃ 0

such that (GrW
k H,F ) is a Hodge structure of weight k for

all k .
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The induced filtration is given by

F p(GrW
k H)C = (F pHC ∩WkHC + Wk−1HC)/Wk−1HC.

When (H,W ,F ) is a MHS we can define the mixed Hodge num-
bers by

hp,q(H) = dim Grp
F GrW

p+qHC.
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Theorem (Deligne 1971)

Let X be a quasi-projective variety, then H∗(X ,Q) has a MHS,
such that for all m ≥ 0,

The weight filtration W on Hm(X ,Q) satisfies

0 = W−1 ⊂W0 ⊂ · · · ⊂W2m = Hm(X ;Q);

for m ≥ n = dim X, we also have W2n = · · · = W2m;

The Hodge filtration F on Hm(X ;C) satisfies
Hm(X ;C) = F 0 ⊃ · · · ⊃ F m+1 = 0. For n = dim X, we also
have F n+1 = 0.
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Theorem (Deligne, 1971)

If X is a smooth variety, then Wm−1Hm(X ,Q) = 0 (i.e., all
weights on Hm(X ;Q) are ≥ m) and
WmHm(X ,Q) = j∗Hm(X ,Q) for any compactification
j : X ↪→ X ;

If X is a projective variety, then WmHm(X ,Q) = Hm(X ,Q)
(i.e., all weights on Hm(X ;Q) are ≤ m) and Wm−1 = kerp∗

for any proper map p : X̃ → X with X̃ smooth.

Example
If X is a smooth projective variety, then the cohomology group
Hm(X ,Q) has a pure Hodge structure of weight m, for all
m ≥ 0.
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Hodge Theory of Plane Curve Complement

Let C ⊂ P2 be a curve defined by f = 0 for f ∈ SN , and U =
P2 \ C.

In particular, for m = 2, the Hodge filtration is given by:

H2(U) = F 0 = F 1 ⊃ F 2 ⊃ F 3 = 0

34 / 41



Introduction Koszul Complexes and Singularities Hodge Theory

Theorem

Let C ⊂ P2 be a curve of degree N, and U = P2 \ C. Suppose
that C has only n nodes and t triple points. Set gj = g(Cj),
where the {Cj}j are the irreducible components of C whose
number is r . Then one has

dim Gr1
F H2(U,C) =

r∑
j=1

gj

and
dim Gr2

F H2(U,C) =
(N − 1)(N − 2)

2
− t .
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Remark

The weight filtration on H2(U) is:

0 ⊂W3 ⊂W4 = H2(U).

Corollary

(i) h2,1(H2(U)) = h1,2(H2(U)) =
∑r

j=1 gj .

(ii) h2,2(H2(U)) = (N−1)(N−2)
2 −

∑r
j=1 gj − t .

(iii) b2(U) = (N−1)(N−2)
2 +

∑r
j=1 gj − t , where b2(U) denotes

the second Betti number of the complement U.

In particular, it follows that H2(U) is pure of type (2,2) when gj =
0 for all j , a well known property in the case of line arrangements.
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Example
gi = 0 for every i = 1, · · · 6, N = 6,
and t = 4. Then, dim H1 = 5, and we
get dim Gr1

F H2(U,C) = dim F 1

F 2 = 0
and dim Gr2

F H2(U,C) = dim F 2 = 6.
Hence b2(U) = 6.
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Example

C : xyz(x2y + x2z + y2x + y2z + z2x + z2y) = 0.It has 3 triple
points and 3 nodes. We have g1 = g2 = g3 = 0, g4 = 1, N = 6.
Then dim H1(U) = 3, dim Gr1

F H2(U,C) = 1 and
dim Gr2

F H2(U,C) = 7, and b2(U) = 1 + 7 = 8.
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Theorem

Let C ⊂ P2 be a curve of degree N, and U = P2 \ C. Suppose
that C has only n nodes and t triple points. Set gj = g(Cj),
where the {Cj}j are the irreducible components of C whose
number is r . Then one has

dim Gr1
F H2(U,C) =

r∑
j=1

gj

and
dim Gr2

F H2(U,C) =
(N − 1)(N − 2)

2
− t .
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Generalization

Theorem

C ⊂ P2 with isolated singularities, then

dim Gr1
F H2(U,C) =

r∑
j=1

gj

Theorem

Let C ⊂ P2 be a curve of degree N having only ordinary
singular points of multiplicity at most 4. If U = P2 \ C, then one
has

dim Gr2
F H2(U,C) =

(N − 1)(N − 2)

2
− t − 3s + b2

4.
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Thank you for your attention!
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