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Plan of the mini course

I. Special geometry

II. Geometric constructions relating different special geometries

III. Constructions of complete quaternionic Kähler manifolds

Plan of the first lecture

I Physical motivation of special geometry

I Affine and projective special real geometry

I Affine and projective special Kähler geometry

I Hyper-Kähler and quaternionic Kähler geometry
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Physical motivation

Scalar geometry

L = −
∑

gij(φ
1, . . . , φn)hµν∂µφ

i∂νφ
j + . . .

Physics Definition

Special geometry is the scalar geometry of supersymmetric field
theories with 8 real supercharges.

One distinguishes between

I Affine special geometry/supersymmetric gauge theories and

I Projective special geometry/supergravity theories.
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Affine special real manifolds I: extrinsic and intrinsic
definition

Definition
An affine special real (ASR) manifold is a domain M ⊂ Rn

endowed with a Riemannian metric g = ∂2h, which is the Hessian
of a cubic polynomial.

Definition
An intrinsic ASR manifold (M,∇, g) is a Riemannian manifold
(M, g) endowed with a flat torsion-free connection ∇ such that
∇g is completely symmetric and ∇-parallel.

Remark
ASR mfs. = scalar mfs. of 5d vector multiplets [CMMS]
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Affine special real manifolds II: intrinsic characterization

Theorem [AC]

(i) Let (M, g) be an n-dim. ASR manifold with flat connection ∇
induced from the inclusion M ⊂ Rn. Then (M,∇, g) is an
intrinsic ASR manifold.

(ii) Conversely, let (M, g ,∇) be an n-dim. s.c. intrinsic ASR
manifold. Then there exists an affine immersion
ϕ : (M,∇)→ Rn and a cubic polynomial h s.t. g = ϕ∗∂2h.
In particular, (ϕ(M), ∂2h) is an ASR manifold.
(ϕ is unique up to affine transformations of Rn.)
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Projective special real manifolds I: extrinsic definition

Definition
A projective special real (PSR) manifold is a hypersurface
H ⊂ Rn+1 s.t. ∃ homog. cubic polynomial h on Rn+1 s.t.

i) h = 1 on H and

ii) ∂2h is negative definite on TH.

H is endowed with the Riemannian metric

gH = −1

3
ι∗∂2h,

where ι : H→ Rn+1 is the inclusion map.

H complete :⇐⇒ (H, gH) complete.

Remark
PSR mfs. = scalar mfs. of 5d sugra coupled to vector multpl. [GST]
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Centroaffine structures

Definition
A centroaffine structure on a smooth manifold M is a triple
(∇, g , ν) consisting of a torsion-free connection ∇, a
pseudo-Riemannian metric g and a volume form ν such that

(i) ∇ν = 0,

(ii) the curvature R of ∇ is given by

R(X ,Y )Z = −(g(Y ,Z )X − g(X ,Z )Y )

for all X ,Y ,Z ∈ X(M) and

(iii) ∇g is completely symmetric.

(M,∇, g , ν) is called a centroaffine manifold.
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Induced centroaffine structure on a hypersurface

Let H ⊂ (Rn+1, det) be a centroaffine hypersurface, i.e. a nondeg.
hypersurface transversal to the position vector field ξ.

Then

(i) ν = ιξ det is a volume form on H and

(ii) the (affine) Gauß equation

∂XY = ∇XY + g(X ,Y )ξ, X ,Y ∈ X(H),

defines a centroaffine structure (∇, g , ν).

Remarks

1. The metric g is called the centroaffine metric.

2. For a PSR manifold (H, gH) we have g = gH.
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Projective special real manifolds II: intrinsic definition

Definition
An intrinsic PSR manifold is a centroaffine manifold (M,∇, g , ν)
with g > 0 such that the covariant derivative of the cubic form
C = ∇g is given by

(∇XC )(Y ,Z ,W ) =

g(X ,Y )g(Z ,W ) + g(X ,Z )g(W ,Y ) + g(X ,W )g(Y ,Z ),

for all X ,Y ,Z ,W ∈ X(M).

Remark
The above equation implies that ∇C is totally symmetric, that is a
quartic form.
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Projective special real manifolds III: intrinsic
characterization

Theorem [CNS]

(i) Let H ⊂ Rn+1 be a PSR manifold with its induced
centroaffine structure (∇, g , ν). Then (H,∇, g , ν) is an
intrinsic PSR manifold.

(ii) Conversely, let (M,∇, g , ν) be a s.c. intrinsic PSR manifold.
Then there exists an embedding ϕ : M → Rn+1 such that
H := ϕ(M) ⊂ Rn+1 is a PSR manifold.

The embedding ϕ is unique up to linear unimodular
transformations of Rn+1.
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Affine special Kähler manifolds

Definition
A (pseudo-) Kähler manifold (M, g , J) is a (pseudo-) Riemannian
manifold (M, g) endowed with a parallel skew-symm. cx. str. J.

Definition [F]

An affine special (pseudo-) Kähler manifold (M, J, g ,∇) is a
(pseudo-) Kähler mf. (M, J, g) endowed with a flat torsionfree
connection ∇ such that

(i) ∇ω = 0, where ω = g(·, J·),

(ii) d∇J = 0, where J is considered as a 1-form with values in
TM.

Remark
Affine special Kähler mfs. = scalar mfs. of 4d N=2 vector
multiplets,
Projective special Kähler mfs. = scalar mfs. of 4d supergravity
coupled to N=2 vector multiplets [DV].
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Conical and projective special Kähler manifolds

Definition [ACD, CM]

A conical affine special Kähler (CASK) manifold (M, J, g ,∇, ξ) is
an affine special (pseudo-)Kähler manifold (M, J, g) endowed with
a vector field ξ such that

(iii) ∇ξ = Dξ = Id, where D is the Levi Civita connection and

(iv) g is positive definite on D := span{ξ, Jξ} and negative
definite on D⊥.

⇒ ξ and Jξ generate a hol. action of a 2-dim. Abelian Lie
algebra. We will assume that the action lifts to a principal
C∗-action with the base M̄ = M/C∗. Then Jξ generates a
free isometric and Hamiltonian S1-action and M̄ inherits a
Kähler metric ḡ . (M̄, ḡ) is called a projective special Kähler
(PSK) manifold.
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Extrinsic construction of special Kähler manifolds I

The ambient space

V = (C2n,Ω, τ), Ω =
∑

dz i ∧ dwi , τ = cx. conjugation.
→ pseudo-Hermitian form γ :=

√
−1Ω(·, τ ·).

Definition
A holomorphic immersion φ : M → V is called nondegenerate if
φ∗γ is nondeg. It is called Lagrangian if φ∗Ω = 0 and dimM = n.

Theorem [ACD]

I A nondeg. hol. Lagrangian immersion φ : M → V induces an
affine special pseudo-Kähler structure (J, g ,∇) on M.

I Every s.c. affine special (pseudo-) Kähler mf. (M, J, g ,∇) of
dim. n admits a nondeg. Lagr. immersion φ : M → V inducing
(J, g ,∇) on M. The immersion is unique up to affine
transformations with real symplectic linear part.
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Extrinsic construction of special Kähler manifolds II

Example (affine special pseudo-Kähler domains)

Let F be a holomorphic function defined on a domain M ⊂ Cn

such that the matrix

(Nij) = (2ImFij),

is nondeg, where Fi = ∂F
∂z I

, Fij = ∂F
∂z i∂z j

etc. Then

φ : M → V , z = (z1, . . . , zn) 7→ (z ,F1, . . . ,Fn)

is a nondeg. Lagr. immersion and, thus, induces an affine special
pseudo-Kähler (J, g ,∇) structure on M.

Definition
Affine special pseudo-Kähler manifolds as in the above example are
called affine special pseudo-Kähler domains. The function F is
called a holomorphic prepotential.
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Extrinsic construction of special Kähler manifolds III

Since every Lagrangian submanifold of (V ,Ω) is locally defined by
equations wi = Fi (z), i = 1, . . . , n, for some hol. function F and
some choice of adapted coordinates (z i ,wi ), we obtain:

Corollary

Let (M, J, g ,∇) be an affine special pseudo-Kähler manifold. Then
for every p ∈ M there exists a neighborhood U isomorphic to an
affine special pseudo-Kähler domain.

Remark
Similar results hold for conical and projective special Kähler
manifolds. CASK manifolds are realized as conical hol. nondeg.
Lagrangian immersions. The corresponding prepotential is defined
on a C∗-invariant domain M ⊂ Cn and is required to be
homogeneous of degree 2 and to satisfy:

∑
Nijz

i z̄ j > 0 and the
real symmetric matrix (Nij) has signature (1, n) on M.
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Extrinsic construction of special Kähler manifolds IV

Example (complex hyperbolic space as PSK domain)

F =
i

4

(z0)2 −
n∑

j=1

(z j)2


on M = {|z0|2 −

∑n
j=1 |z j |2 > 0} ⊂ Cn+1 is a prepot. for a CASK

domain (M, J, g ,∇, ξ). The corresponding PSK domain is CHn.
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Hyper-Kähler manifolds

Definition
A (pseudo-) hyper-Kähler manifold (M, g , J1, J2, J3) is a (pseudo-)
Riemannian manifold (M, g) endowed with 3 pairwise anticomm.
parallel skew-symm. cx. structures J1, J2, J3 s.t. J3 = J1J2.

Remark
=⇒ (M, Jα, g) is (pseudo-) Kähler for α = 1, 2, 3.

Example

Hn = R4n with the Euclidean scalar product 〈·, ·〉 and J1 = Li ,
J2 = Lj , J3 = Lk is a hyper-Kähler manifold.
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Quaternionic Kähler manifolds I

Definition

(i) A quaternionic structure on a vector space V is a subspace
Q ⊂ End(V ) spanned by three pairwise anticomm. cx.
structures I , J,K s.t. K = IJ.

(ii) An almost quaternionic structure on a manifold M is a
subbundle Q ⊂ End(TM) such that Qp is a quaternionic
structure on TpM for all p.
The bundle Q is called a quaternionic structure if it is parallel
for some torsion-free connection.

(iii) Let M be a mf. of dim > 4. A quaternionic Kähler structure
on M is a pair (g ,Q) consisting of a Riem. metric g and a
parallel quaternionic structure Q ⊂ so(TM). The triple
(M, g ,Q) is called a quaternionic Kähler (QK) manifold.

Remark
If dimM = 4 in (iii), one has to require in addition Q · R = 0,
which is automatic in higher dimensions. 19 / 24



Quaternionic Kähler manifolds II

Fundamental fact
Quaternionic Kähler manifolds are Einstein. =⇒ 3 cases:
Ric = 0, Ric > 0, Ric < 0.

Relevance to scalar geometry of N = 2 theories

Hyper-Kähler mfs. = scalar mfs. of hypermultiplets,
Quaternionic Kähler mfs. (of Ric < 0) = scalar mfs. of
supergravity coupled hypermultiplets [BW].

Examples

Ric = 0 : Ricci-flat s.c. QK mfs. are HK.

Ric > 0 : Only known examples of complete QK mfs. of Ric > 0 are the
Wolf spaces = QK symmetric spaces of compact type
(described below).

I Simplest example: HPn.
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Quaternionic Kähler manifolds III

Examples continued

Ric < 0 : Known complete QK mfs. of Ric < 0:
I QK symm. spaces of noncp. type (dual to Wolf spaces), such

as HHn.
I Loc. symm. QK mfs. (including compact examples).
I Alekseevsky spaces (homog. including nonsymm. examples).
I Deformations of HHn, see [L].
I New explicit examples obtained using results explained in the

next lectures.
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Quaternionic Kähler manifolds IV:

The Wolf spaces can be obtained as follows:

I Let G be a cp. s.c. simple Lie group and h ⊂ g = LieG a
Cartan subalgebra,

I µ the highest root w.r.t. some system of simple roots and
sCµ = span{Hµ,E±µ} ⊂ gC the corresponding 3-dim. subalg.

I Hµ ∈ ih is normalized such that [Hµ,E±µ] = ±2E±µ. Then
adHµ has eigenvalues 0,±1,±2 and defines a grading

gC = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where g±2 = CE±µ and g0 = CHµ ⊕ ZgC(sCµ ).

I Put sµ := g ∩ sCµ , k := g ∩
∑

i=0,±2
gi = sµ ⊕ Zg(sµ) = Ng(sµ),

m := g ∩
∑

i=±1
gi .

I Then g = k + m is a symmetric decomposition, which defines
a cp. QK symm. space M = G/K , K = NG (sµ).
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Quaternionic Kähler manifolds V:

Remarks

I The invariant quat. structure Q of the Wolf spaces is defined
at o = eK ∈ M = G/K as the image of sµ ∼= sp(1) under the
adjoint action on m ∼= ToM.

I It is skew-symmetric w.r.t. the inv. Riem. metric of M. The
invariance of Q follows from K = NG (sµ) and implies that Q
is parallel,

I since the holonomy group of M is identified with the isotropy
group

Hol = AdK |m,

by the Ambrose-Singer theorem.

I The noncompact duals Mnc = Gnc/K are obtained from the
symmetric decomposition gnc = k + im.
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Quaternionic Kähler manifolds VI:

The list of Wolf spaces M = G/K

I Classical:

Sp(n + 1)

Sp(n)Sp(1)
= HPn = Gr1(Hn+1),

SU(n + 2)

S(U(n)U(2))
= Gr2(Cn+2),

SO(4n + 4)

SO(4n)SO(4)
= Gr4(R4n+4),

I Exceptional:

G2/SO(4), F4/(Sp(3)Sp(1)),
E6/(SU(6)Sp(1)), E7/(Spin(12)Sp(1)), E8/(E7Sp(1)).
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