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Riemannian flow

Let (Mn+1, g) be a Riemannian manifold endowed with a
Riemannian flow F given by a unit vector field ξ. That is, the
vector ξ defines a 1-dimensional foliation on M by its integral
curves satisfying the rule

(Lξg)(Z ,W ) = 0

for all Z ,W orthogonal to ξ.

Equivalently, this means that the endomorphism
h = ∇Mξ : ξ⊥ → ξ⊥, called the O’Neill tensor, is a
skew-symmetric tensor field.
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Transversal Levi-Civita connection

There exists a unique metric connection on the normal bundle
Q = ξ⊥ given by

∇XZ =


π([X ,Z ]) for X = ξ

π(∇M
X Z ) for X ⊥ ξ

where Z ∈ Γ(Q) and π : TM −→ Q is the orthogonal
projection.

Basic Property: ξyR∇ = 0. Therefore, one may define
Ric∇,Scal∇, ...
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Gauss-type formulas

We have the Gauss-type formulas: For all Z ,W ∈ Γ(Q)
∇M

ξ Z = ∇ξZ + h(Z )− g(Z , κ)ξ

∇M
Z W = ∇ZW − g(h(Z ),W )ξ

where κ := ∇M
ξ ξ is the mean curvature of the flow.
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Spin Riemannian flow

Assume that M is a spin manifold. As we have the orthogonal
splitting TM = Rξ ⊕ Q, the normal bundle carries a spin
structure (as a vector bundle) given by the pull-back of the
one on M.

We have the isomorphisms
ΣM ' ΣQ if n is even

ΣM ' ΣQ ⊕ ΣQ if n is odd.
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Spinorial Gauss-type formulas

The Clifford multiplications on M and Q are identified as: For
all Z ∈ Γ(Q), ϕ ∈ Γ(ΣM),

Z ·M ϕ = Z ·Q ϕ if n is even

Z ·M ξ ·M ϕ = (Z ·Q ⊕− Z ·Q)ϕ if n is odd.

We have the spinorial Gauss-type formulas on ΣM and ΣQ:
For all ϕ ∈ Γ(ΣM)

∇M
ξ ϕ = ∇ξϕ+ 1

2Ω ·M ϕ+ 1
2ξ ·M κ ·M ϕ

∇M
Z ϕ = ∇Zϕ+ 1

2ξ ·M h(Z ) ·M ϕ

where Ω(·, ·) = g(h·, ·) is a 2-form on Γ(Q).
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Basic Dirac operator

The basic Dirac operator is defined on the set of basic spinors
(that is, spinors constant along the leaves) as

Db =
n∑

i=1

ei ·Q ∇ei −
1

2
κ·Q ,

where {ei}i=1,··· ,n is an orthonormal frame of Γ(Q).

We have the relations
DM = Db − 1

2ξ ·M Ω·M if n is even

DM = ξ ·M (Db ⊕−Db)− 1
2ξ ·M Ω·M if n is odd.
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Manifolds with boundary

Let (Nn+2, g) be a Riemannian spin manifold with smooth
boundary ∂N = M. The unit normal vector field ν induces the
spin structure on N to M. In this case, the extrinsic spinor
bundle S := ΣN|M is identified with the intrinsic one ΣM for
n odd or to a double copy for n even.

We have the Gauss formula: For all X ∈ Γ(TM), ϕ ∈ Γ(S)

∇N
Xϕ = ∇S

Xϕ+
1

2
A(X ) ·S ϕ,

where A = −∇Nν is the second fundamental form of the
boundary and “ ·S ” is the Clifford multiplication given by
X ·S ϕ = X · ν · ϕ.
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Eigenvalue estimate

Theorem (O. Hijazi - S. Montiel, 2001)

Let M be the compact boundary of a spin manifold (Nn+2, g) with
non-negative scalar curvature. Assume that the mean curvautre H
is positive. The first non-zero eigenvalue of the Dirac operator of
M satisfies

λ ≥ n + 1

2
inf
M

H.

The equality case is realized if and only if H is constant and any
eigenspinor is the restriction of a parallel spinor on N.

Direct Application : Spinorial proof of the Alexandrov theorem.
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Rigidity results

If the boundary carries a Killing spinor, under some curvature
assumptions, the boundary is totally umbilical and the
ambient manifold carries a parallel spinor (it is thus Ricci-flat).
Consequence: A complete Ricci-flat Riemannian manifold of
dimension at least 3, whose mean-convex boundary is
isometric to the round sphere, is a flat disc [O. Hijazi-S.
Montiel, 2001].

In general, given a solution of the Dirac equation, the
boundary has to be connected and the solution is the
restriction of a parallel spinor.
Consequence: If the boundary of a manifold is isometric to
the round sphere with mean curvature H ≥ 1, the manifold is
isometric to the unit closed ball [S. Raulot, 2008].
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Integral inequality

Theorem (O. Hijazi - S. Montiel, 2014)

Let (N, g) be a spin manifold with non-negative scalar curvature.
Assume that the mean curvature of the boundary is positive. For
any spinor field ϕ ∈ Γ(S), the inequality holds

0 ≤
∫

M

1

H

(
|DSϕ|2 −

(n + 1)2

4
H2|ϕ|2

)
dv ,

where dv the volume element on M and DS is the Dirac operator
defined on S.

Property: DS = n+1
2 H − ν · DN −∇N

ν .
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Equality case

The equality is characterized by the existence of two parallel
spinors ψ, θ ∈ Γ(ΣN) such that P+ϕ = P+ψ and
P−ϕ = P−θ. The operators P± are the orthogonal projections
onto the eigenspaces corresponding to the ±1-eigenvalues of
the endomorphism iν.

Direct application: Shi-Tam type inequality, Positive mass
theorem...
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Manifolds with foliated boundary

Let (Nn+2, g) be a spin manifold whose boundary M carries a
Riemannian flow given by a unit vector field ξ.

We have the isomorphisms:
ΣQ ⊕ ΣQ ' ΣM ⊕ ΣM ' S if n is even

ΣQ ⊕ ΣQ ' ΣM ' S if n is odd.
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Main results

Theorem

Let N be an (n + 2)-dimensional compact Riemannian spin
manifold with non-negative scalar curvature, whose boundary
hypersurface M has a positive mean curvature H and is endowed
with a Riemannian flow. Assume that there exists a spinor field ϕ
such that Dbϕ = n+1

2 H0ϕ, where H0 is a positive basic function.
Then, we have

0 ≤
∫

M

1

H

(
(n + 1)2H2

0 |ϕ|2 + |Ω ·M ϕ|2 − (n + 1)2H2|ϕ|2
)
dv .
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Equality case

Theorem

If we assume that g(A(ξ), ξ) ≥ 0 in the previous theorem, then
equality holds in the inequality if and only if h = 0 (that is the flow
is a local product) and H0 = H. In this case, we get that A(ξ) = 0
and the spinors ϕ and ξ · ϕ are respectively the restrictions of
parallel spinors on N if n is even, and if n is odd the spinor
ϕ+ ξ ·M ϕ is the restriction of a parallel spinor on N.
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Proof of the inequality for n even

We have:

DSϕ = DMϕ =
n + 1

2
H0ϕ−

1

2
ξ ·M Ω ·M ϕ

and

DS(ξ · ϕ) = −DM(ξ · ϕ) =
n + 1

2
H0ξ · ϕ−

1

2
ν · Ω · ϕ

We used the fact that Db(ξ·) = −ξ · Db.

By computing the norm in both equations and taking the
sum, we get the result. �
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Characterization of the equality case

Lemma

If the equality holds, we have

h(X ) ·M ϕ+ g(A(ξ),X )
H0

H
ϕ− 1

(n + 1)H
g(A(ξ),X )ξ ·M Ω ·M ϕ

= − 1

(n + 1)H
A(X ) ·M Ω ·M ϕ,

(1)

for all X ∈ Γ(TM).
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Sketch of the proof of the lemma

There exists two parallel spinors ψ and θ on N such that
P+ϕ = P+ψ and P−ϕ = P−θ. Applying DS on both sides, we
get P−(DSϕ) = n+1

2 HP−ψ and P+(DSϕ) = n+1
2 HP+θ.

The same technique can be used for the spinor field ξ · ϕ and
two other spinor fields Ψ and Θ exists.

Differentiating the equations ξ · P−θ = P+Ψ and
ξ ·P+ψ = P+Θ along any vector field X in Γ(TM), we deduce
the result. �
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Proof of the theorem

Taking the trace of Equation (1) and multiplying the new
equation by A(ξ) ·M ξ·M , we find

−A(ξ) ·M κ ·M ϕ+ BΩ ·M ϕ+
H0

H
|A(ξ)|2ξ ·M ϕ

+(n+1)H0A(ξ)·Mϕ+
(
(n+1)H+2g(A(ξ), ξ)

)
ξ ·M κ·Mϕ = 0,

where B = 1
(n+1)H |A(ξ) + (n + 1)Hξ|2 6= 0.

Replacing Ω ·M ϕ by its value from the above equation into
(1) and taking X = ξ, we get HIκ ·M ϕ+ H0Jϕ = 0.
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The terms I and J are defined by

I := (n + 1)H + g(A(ξ), ξ),

J := (n + 1)Hg(A(ξ), ξ) + |A(ξ)|2.

The Hermitian product by ϕ gives that h = 0 and Aξ = 0.
Applying DS on both equalities:

H0P+ϕ = HP+θ and H0P−ϕ = HP−ψ

yields to H0 = H and ϕ = ψ = θ on M. �
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Rigidity results

Corollary

Let N be a compact spin Riemannian (n + 2)-dimensional manifold
with non-negative scalar curvature, whose boundary hypersurface
M has positive mean curvature H and is endowed with a
Riemannian flow. Assume that there exist a spinor field ϕ such
that Dbϕ = n+1

2 H0ϕ, where H0 is a positive basic function with

H0 + 1
n+1 [n2 ]

1
2 |Ω| ≤ H. Then the vector field ξ is parallel on M and

A(ξ) = 0. Moreover, the spinors ϕ and ξ · ϕ are respectively the
restrictions of parallel spinors on N if n is even and if n is odd, the
spinor ϕ+ ξ ·M ϕ is the restriction of a parallel spinor on N.
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Basic Killing spinors

Theorem

Let (Nn+2, g) be a spin manifold of non-negative scalar curvature
with connected boundary M of positive mean curvature H.
Assume that M is endowed with a minimal Riemannian flow
carrying a maximal number of basic Killing spinors of constant −1

2
(resp. a maximal number of basic Killing spinors of constants −1

2
and 1

2) if n is even (resp. if n is odd). If the inequality
n

n+1 + 1
n+1 [n2 ]

1
2 |Ω| ≤ H holds, the boundary M is isometric to the

Riemannian product S1 × Sn and N is isometric to S1 × B, where
B is the unit ball in Rn+1.
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Sketch of the proof

From the Gauss and O’Neill formulas, we deduce that
A(X ) = X for all X ∈ Γ(Q). Moreover, from the fact that
Aξ = 0 and h = 0, we deduce that N is flat (maximal number
of parallel spinors) and M̃ is isometric to R× Sn. Thus
M ' S1 × Sn.

The vector field ξ can be extended to a unique parallel vector
field ξ̂ on N. It is indeed a solution of the boundary problem:

∆N ω̂ = 0 on N

J∗ω̂ = ω, J∗(δN ω̂) = 0 on M.

The operator J∗ is the restriction to the boundary.
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Let N1 be a connected integral submanifold of (Rξ̂)⊥. The
manifold N1 is complete with ∂N1 is compact and totally
umbilical in N1.

From the rigidity result in [M. Li, 2014], we deduce that N1 is
compact. Then from [S. Raulot, 2008] we get that ∂N1 is
connected and isometric to Sn. Therefore N1 ' B.

Using the Brouwer fixed-point theorem, we finish the proof. �
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Corollary

Let (Nn+2, g) be a compact spin Riemannian manifold with
non-negative scalar curvature. We assume that the boundary is
isometric to S1 × Sn with mean curvature H ≥ n

n+1 . If the induced

spin structure on M is the trivial one on S1 × Sn, then N is
isometric to the product of S1 with the unit ball.

More details in : Rigidity results for spin manifolds with foliated
boundary, arxiv:1412.1339.
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