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The Laplace operator on a compact manifold.

Let (M, g) be a compact Riemannian manifold of dimension n.

The metric in coordinates: g =
∑n

i ,j=1 gij(x)dxi ⊗ dxj .

Consider the Laplacian ∆g on a function f :

∆g f = −div∇f = − 1

v(x)

∑
k,`

∂xk gk`v(x)∂x`f

= −gk`∂xk∂x`f + lower order terms

where v(x) =
√

det(gij(x)) and (gk`) = ((gij)
−1)k,`.
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Compact manifold, the spectrum of the Dirichlet
Laplacian.

Let (M, g) be a Riemannian manifold with boundary.

We look for solutions of the Dirichlet eigenvalue problem:

∆gu = λu, u|∂M = 0, u 6= 0.

We know that there exist infinitely many such solutions λj , uj .

0 < λ1 ≤ λ2 ≤ · · · ↗ ∞

The spectrum of the Laplacian Spec(∆g ) = {λj}∞j=1.
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The spectrum of the Laplacian, example.

Let D be a disk of radius R, D ⊂ R2.

The Euclidean metric on D in polar coordinates:

g = dr 2 + r 2dφ2.

The Laplacian in polar coordinates is:

(∆D f )(r , φ) = −
(
∂2f

∂r 2
+

1

r

∂f

∂r
+

1

r 2

∂2f

∂φ2

)
The spectrum of the Dirichlet Laplacian is

λ0,k =
j2
0,k

R2 , the k-th zero of the Bessel function J0, k ≥ 1.

λn,k =
j2
n,k

R2 , the k-th zero of the Bessel function Jn, k , n ≥ 1
with double multliplicity.
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The determinant of the Laplacian (Ray-Singer ’71)

The spectral zeta function associated to ∆g , for Re(s) > n/2:

ζ∆g (s) =
∑
λj>0

λ−sj = Tr((∆g − P)−s)

=
1

Γ(s)

∫ ∞
0

(Tr(e−t∆g )−m)ts−1dt,

where P is the projection on Ker(∆g ), m = dim(Ker(∆g )) and
e−t∆g , for t > 0, is the heat semi-group.
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The determinant of the Laplacian

Using some properties of the trace of the heat operator,
ζ∆g (s) can be extended meromorphically to C.

Define the regularized determinant of ∆g as

det ∆g = exp(− d

ds
ζ∆g (s)

∣∣
s=0

).

det(∆g ) is completely determined by spectrum

It generalizes the determinant of a positive matrix; let A be
such a matrix

det(A) =
∏

λj = exp
∑
j

log(λj) = exp(− d

ds

∑
j

λ−sj

∣∣
s=0

)
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The determinant of the Laplacian

Example: M = S1 = R /2πZ
Eigenvalues: λj = j2

ζS1(s) = 2
∑

j≤1 j−2s

ζ ′S1(0) = 4ζ ′R(0),

det(∆S1) = 4π2.

Remark

det ∆g is a spectral invariant. It makes sense to study how it varies
with respect to the metric.

det(∆g ) is a global invariant, it is not local.

However, the variation of det(∆g ) is local.
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Extremals of determinants on surfaces

Let M be a closed surface of genus p.
Met(M): smooth metrics on M up to isomorphism.

det : Met(M)→ R, g 7→ det ∆g .

[g ] = {h ∈ Met(M)|h = e2ϕg , ϕ ∈ C∞(M)}: the conformal class.

Theorem (Osgood, Phillips, Sarnak)

In each conformal class in Met(M), up to isometry, among all
metrics of unit area, there exists a unique metric τ of constant
curvature at which det(∆τ ) attains a maximum, i.e.

det(∆τ ) ≥ det(∆h),∀h ∈ Conf1(g)

Clara L. Aldana A Polyakov formula for surfaces with conical singularities and angular sectors



Motivation and Introduction
Our setting, sectors and cones

Idea of the proof

Extremals of determinants on surfaces

Analogous results for surfaces with smooth boundary (OPS)

Planar domains of finite connectivity and smooth boundary
(OPS)

Surfaces with with asymptotic hyperbolic cusps and funnels
using renormalized determinants (Albin, Aldana and Rochon)

Higer dimensions: dimensions 3 and 4 (A. Chang, J. Qing, T.
Branson, P.Gilkey, P. Yang)

We want to study this problem for surfaces with conical
singularities.
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Polyakov’s formula for closed surfaces

Let (M, g) be closed. Let h = e2ϕg , with ϕ ∈ C∞(M)

log det(∆h) = − 1

12π

∫
M
|∇gϕ|2 dAg −

1

6π

∫
M

Rg ϕ dAg

+ log Ah + log det(∆g ).

where Rg is the Gaussian curvature of g . (Polyakov, Alvarez, OPS,
and many others)
Polyakov’s formula gives a link between the determinant, which is
defined in terms of the spectrum, and the second order derivatives
of the conformal factor. To obtain Polyakov’s formula, one uses
the heat equation.
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Heat equation

Let (M, g) n-dim Riem. mfd. The heat operator e−t∆g gives the
solutions to

(∂t + ∆g )u = 0, u(z , 0) = f (z), u(z , t)|∂M = 0,∀t > 0

It is a compact, smoothing operator. It is trace class for t > 0.

It has an integral kernel and

u(z , t) = (e−t∆g f )(z) =
∫
M Kg (z , z ′, t)f (z ′)dAg (z ′)

By Lidskii’s Thm,

Tr(e−t∆g ) =
∞∑
j=0

e−tλj =

∫
M

Kg (z , z , t)dAg (z)

The spectrum of ∆g completely determines the heat trace.
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Heat invariants in dimension 2

At t = 0, the heat trace diverges. Asymptotic expansion in t: If M
has dimM = 2, ∂M 6= ∅:

Tr(e−t∆g ) ∼ t−1
∞∑
j=0

aj t
j + t−1

∞∑
j=0

bj t
j+ 1

2 .

Definition

The coefficients aj , bj are called the heat invariants.

They are local invariants (Gilkey, Branson...)
Osgood, Phillips, Sarnak (closed surface), Branson, Gilkey and
Orsted (more general):

aj(∆) =

∫
M

(j(j−1)cj)|∇j−2R|2+polynomial(R,∇R, . . .∇j−3R)dA

for j ≥ 3, where R is the scalar curvature.
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Heat invariants in dimension 2

Melrose (planar domains), M = Ω ⊂ R2

bj+1 = cj ,u

∫ L

0
|κ(j)(s)|2 + qj(κ, . . . , κ

(j−1))ds

where κ(s) is the curvature of ∂Ω.

In particular:

a0 = Area(M,g)
4π , b0 = − length(∂M,g)

8
√
π

, a1 = χ(M)
6 .

The spectrum determines the area, the length of the
boundary, and χ(M).

Clara L. Aldana A Polyakov formula for surfaces with conical singularities and angular sectors



Motivation and Introduction
Our setting, sectors and cones

Idea of the proof

Polyakov’s formula for closed surfaces

To obtain Polyakov’s formula, one considers the variation of the
spectral zeta function. Let (M, g), and h = e2ϕg , let ψ ∈ C∞(M),

Let us consider hu = e2(ϕ+uψ)g , so h0 = h.

∆u = ∆hu = e−2(ϕ+uψ)∆g

The varition of log(det(∆h)) in the direction of ψ is

δ

δψ
log(det(∆h)) = − d

du
ζ ′∆u

(0) = − d

ds

d

du
ζu(s)

∣∣∣∣
u=0,s=0

,

we first consider d
du ζu(s), for Re(s) big enough. To

differentiate w.r.t. s we take its meromorphic extension to C
that is regular at s = 0.
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Polyakov’s formula for closed surfaces

Then we have

d

ds

d

du
ζu(s)

∣∣∣∣
u=0,s=0

= pft=0 Tr(2ψ(e−t∆h − P))

= pft=0

∫
M

2ψ(z)(Kh(z , z , t)−m)dAh(z)

= 2

∫
M
ψ

(
Rh

12π
− 1

Ah

)
dAh

where pft=0 denotes the finite part as t → 0, and Rh is the
Gaussian curvature of h.
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The variational Polyakov formula for closed surfaces

We call the formula

δ

δψ
log(det(∆h)) = pft=0 Tr(2ψ(e−t∆h − P))

the variational Polyakov formula. It is a local formula!

The trace Tr(ψe−t∆h) has an asymptotic expansion as t → 0:

Tr(ψe−t∆h) = a0(h, ψ)t−1 + a2(h, ψ) + O(t)

Then δ
δψ log(det(∆h)) = 2 (a2(h, ψ)− dim(Ker(∆h)))
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The variational Polyakov formula for compact smooth
surfaces

If ∂M 6= ∅, we have δ
δψ log(det(∆h)) = pft=0 Tr(2ψe−t∆h)

Tr(ψe−t∆h) = a0(h, ψ)t−1 +a1(h, ψ)t−1/2 +a2(h, ψ)+O(t1/2)

Then δ
δψ log(det(∆h)) = 2a2(h, ψ)

In Polyakov’s formula there appear additional terms coming
from the geodesic curvature of the boundary.

log det(∆h)− log det(∆g ) = − 1

12π

∫
M
|∇gϕ|2 dAg

− 1

6π

∫
M

Kg ϕ dAg −
1

6π

∫
∂M

κgϕdsg −
1

4π

∫
∂M

∂nϕdsg .
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Planar Domains

Let Ω ⊂ R2, bounded convex domain with continuous boundary.
Let ∆ be the Euclidean Laplacian. The domain of the Dirichlet
Laplacian is

Dom(∆) = H1
0 (Ω) ∩ H2(Ω)

(Grisvard, Ladyzhenskaya-Ural’tseva).
As before, we know that there exist infinitely many solutions λj , uj

to the Dirichlet eigenvalue problem The spectrum of the Laplacian
Spec(∆g ),

0 < λ1 ≤ λ2 ≤ · · · ↗ ∞

obeys Weyl’s law and the determinant can be defined as above.
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Planar Domains and sectors

Let Sα be a finite area convex sectors with α ∈ (0, π)

Theorem (Aldana, Müller, Rowlett)

The derivative of − log(det(∆α)) with respect to the angle α is the
finite part (Hadamard’s partie finie) as t ↓ 0 of the integral

TrL2(Sα,g)

(
2

1 + log(r)

α
e−t∆α

)
=

∫
Sα

2
1 + log(r)

α
KSα(t, r , φ, r , φ)rdrdφ, (2.1)

where KSα denotes the heat kernel on Sα. If the radial direction is
multiplied by a factor of R, g → R2g, then

det(∆α) 7→ R−2ζ∆α (0) det(∆α).
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Surfaces with conical singularities, definition

A Riemannian surface (Mγ , g) has a conical singularity at the
point p with “opening angle” γ if p has a neighborhood

N ∼= [0,R]r × S1
φ,

in which the metric is

g = dr 2 + r 2γ2dφ2,

where dφ2 is the standard metric on S1 with radius one.
Consider conformal variations of g with a conical singularity at p,
but the angle may vary: In N the variation of the conformal factor
is in the direction of

ξ(r , φ) = c(φ) log(r), with c ∈ C∞(S1).

Away from p, ξ is smooth. The metrics hu = e2uξg are metrics
with a conical singularity at p.
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Surfaces with conical singularities

Theorem (Aldana, Müller, Rowlett)

Let (S , g) be a Riemannian surface with a conical singularity.
Then the derivative of ζ ′∆g

(0) with respect to a conformal variation
of the metric g in the direction of a function ξ described above is
the finite part as t ↓ 0 of

TrL2(S ,g)

(
2ξ
(
e−t∆g − PKer(∆g )

))
,

where e−t∆g denotes the heat operator for (S , g) and PKer(∆g )

denotes the projection on the kernel of ∆g .
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Remark about computations of the finite part

Recall the following facts about the asymptotic expansion of the
heat trace on a surface (or domain) with continuous boundary.

If ∂M = ∅, the heat invariants depend on the curvature and
its derivatives.

If ∂M 6= ∅, but smooth the boundary contribute to the heat
invariants through the geodesic curvature of the bdy

If ∂M has corners then there is a contribution of the corners
to the heat invariants depending on the angles

For a2 we have (Kac, Mazzeo-Rowlett)

a2 =
1

12π

∫
Ω

KdA +
∑
j

∫
γj

κds

+
N∑
j=1

π2 − α2
j

24παj
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Remark about computations of the finite part

We expect to have the same kind of contributions here since the
formula is local. For the sector Sα using a parametrix we can
replace the heat kernel on Sα by the h.k. of the model in the
expansion of the trace in (2.1), as follows:

The h.k. for R2 for the interior away from the straight edges.

The h.k. for R2
+ close to the straight edges away from the

corners.

The h.k. for the unit disk close to the curved arc away from
the corners.

The h.k. for the infinite sector with opening angle π/2 close to
the corners of the circular arc which meet the straight edges.

The h.k. for the infinite sector with opening angle α close to
the vertex of the sector.
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Remark about computations of the finite part

The contribution of the interior and of the boundary will be
the same as for Polyakov’s formula in the smooth setting.

Then, after we have proved the theorems, we are only left to
compute the constant term in the integral∫

Sα

log(r)KSα,∞(t, r , φ, r , φ) rdrdφ

where KSα,∞ is the heat kernel on the infinite sector with
opening angle α.
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Idea of the proof

The proof follows several steps

Uniform geometric setting

Uniform analytic setting

Differentiation of the spectral zeta function (standard).
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Idea of the proof: Uniform geometric setting

We fix R = 1. Let Sα with 0 < α < π be fixed. Let Q = Sβ with
0 < β be also fixed.

Let {Sγ}γ be a family of sectors, want to compute d
dγ ζ∆γ (s)

Consider the transformation:

Ψγ : Q → Sγ , (ρ, θ) 7→
(
ργ/β,

γθ

β

)
= (r , φ)

The pull-back of the Euclidean metric g on Sγ by Ψγ is

hγ := Ψ∗γg =
(
γ
β

)2
ρ2γ/β−2

(
dρ2 + ρ2dθ2

)
Then writing hγ = e2σγg the conformal factor is

σγ(ρ, θ) = log
(
γ
β

)
+
(
γ
β − 1

)
log ρ
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Idea of the proof: Uniform geometric setting

Since we want incomplete metrics, we require that γ > β

We consider {(Q, hγ)}γ≥β. So hγ represents (Sγ , g).

The map Ψ∗γ : C∞c (Sγ)→ C∞c (Sγ) extends to the L2 spaces.

Proposition (AMR)

For γ ≥ β, the map Ψ∗γ gives an equivalence between the domain
of ∆hγ and the domain of the Dirichlet self-adjoint extension of
∆γ on the sector Sγ . Moreover,

Ψ∗γ(Dom(∆Sγ )) = Dom(∆hγ ) = H2(Q, hγ) ∩ H1
0 (Q, hγ),

with ∆hγ = Ψ∗γ ◦∆γ ◦ (Ψ∗γ)−1.
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Idea of the proof: Uniform geometric setting

For a surface with a conical singularity (Mγ), let
Q = Mβ = (M, gβ). Define a map Ψγ that restricted to N is given
by

Ψγ : N ⊆ Q → N ⊂ Mγ , (ρ, θ) 7→
(
ργ/β, θ

)
= (r , φ).

The conformal metric hγ restricted to N is

hγ = Ψ∗γgγ = e2σγ
(
dρ2 + ρ2β2dθ2

)
,

where σγ is the same function as in the case of the sector.

For γ ≥ β, Ψγ induces isometries Ψ∗γ between the Sobolev
spaces H1(Q, hγ) and H1(Mγ , g), and also between

H2(Q, hγ) and H2(Mγ , g), f ∈ H2(Q, hγ) if and only if
Ψ∗f ∈ H2(Sγ , g).
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Idea of the proof: Uniform analytic setting

We want that all the Laplace operators ∆hγ act on the same
Hilbert space L2(Q, g). We need another description of the
domains.

Definition

The b-vector fields on (Sγ , g), are defined as

Vb := C∞ span of {r∂r , ∂φ}.

For m ∈ N, the b-Sobolev space

Hm
b := {f |V1 . . .Vj f ∈ L2(Sγ , g)∀j ≤ m, V1, . . . ,Vj ∈ Vb},

and H0
b = L2(S , g). The weighted b-Sobolev spaces are

r xHm
b = {f : ∃v ∈ Hm

b , f = r xv}.
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Idea of the proof: Uniform analytic setting

Proposition (Mazzeo; Gil, Kreine, Medoza; and other authors)

The domain of the Dirichlet Laplacian ∆Sγ on Sγ is

Dom(∆Sγ ) = r 2H2
b ∩ H1

0 .

The domain of the Friedrichs extension of the Laplacian on Mγ

with radial coordinate r near the singularity is

Dom(∆M) = R+r 2H2
b = {u : ∃u0 ∈ R, v ∈ r 2H2

b , u = u0 + v}.

Example

Let ψ(r , φ) = r x sin(kπφ/γ). Then (r∂r )ψ, (r∂r )2ψ ∈ r 2H2
b(Sγ) if

and only if x > 1.

Clara L. Aldana A Polyakov formula for surfaces with conical singularities and angular sectors
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Idea of the proof: Uniform analytic setting

In order to make {∆hγ}γ act on the same L2 space we consinder
the maps:

On sector (Q, hγ)

Φγ : L2(Q, dAhγ )→ L2(Q, dA), f 7→ eσγ f = γ
βρ

γ/β−1f

Φ−1
γ : L2(Q, dA)→ L2(Q, dAhγ ), f 7→ e−σγ f = β

γ ρ
−γ/β+1f

Each Φγ is an isometry of L2(Q, dAhγ ) and L2(Q, dA).

On surfaces (Q, hγ) the map Φγ is defined in slightly
differently.

Let D(Q, dAhγ ) be the closure of the orthogonal complement
of R (the constant functions) in L2(Q, dAhγ ).

Φγ : R⊕D(Q, dAhγ )→ R⊕D(Q, dA), (u0, v) 7→ (u0, e
σγv)

Φγ is then an isometry from its domain onto its image.
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Idea of the proof: Uniform analytic setting

Proposition (AMR)

Let γ ∈ [β, π). The for Sγ we have

Φγ

(
Ψ∗γ
(
Dom(∆Sγ )

))
⊆ ρ2γ/βH2

b(Q, dA) ∩ H1
0 (Q, dA),

For a surface Mγ we have

Φγ

(
Ψ∗γ
(
Dom(∆Mγ )

))
⊆ R+ρ2γ/βH2

b(Q, dAβ),

Moreover, in both cases we also have the nesting of domains

Φγ

(
Ψ∗γ
(
Dom(∆Sγ )

))
⊂ Φγ′

(
Ψ∗γ′

(
Dom(∆Sγ′ )

))
, γ′ < γ,

Φγ

(
Ψ∗γ
(
Dom(∆Mγ )

))
⊂ Φγ′

(
Ψ∗γ′

(
Dom(∆Mγ′ )

))
, γ′ < γ.
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Idea of the proof: Uniform analytic setting

The family of operators we require is

Hγ := ΦγΨγ ◦∆γ ◦Ψ−1
γ ◦ Φ−1

γ = Φγ ◦∆hγ ◦ Φ−1
γ ,

and we have the nesting of the domains for β ≤ γ′ ≤ γ

Dom(Hγ) ⊂ Dom(H ′γ) ⊂ Dom(∆) = ρ2H2
b(Q) ∩ H1

0 (Q),

where ∆ is the Euclidean Laplacian on Q = Sβ in polar
coordinates (ρ, θ).
In order to compute the derivative with respect to the angle at
γ = α, we must apply both Hγ and Hα to the elements in the
domain of Hα.
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Idea of the proof: Differentiation of the zeta function

Now we are ready to differentiate the spectral zeta function with
respect to the angle.

We need to differentiate the heat operator. For that we need
to compute

e−tHγ1 − e−tHγ2 using Duhamel’s principle.

We need to consider the difference Hγ1 − Hγ2

and compose it with e−sHγ1 or e−sHγ2 .

We can only do that if the domains are suitably contained in
each other.
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Idea of the proof: Differentiation of the zeta function

Choice of Q = Sβ
1 For γ > α, set β := α, so Q = Sα.

However Dom(Hγ) ( Dom(∆).

Put ∆̃ := ∆
∣∣∣
Dom(Hα+ε)

, ε > 0,

for γ ∈ [α, α + ε] and ϕ ∈ Dom(∆̃), (Hγ − ∆̃)ϕ.

Thus we compute the right-sided derivative as γ ↓ α for the
operator ∆̃.

2 For γ < α, the metric hγ is complete. Then we set β := α/2.
So Q = Sα/2.

We take the left-sided derivative as γ ↑ α and
Dom(Hα) ⊂ Dom(Hγ) for any γ.
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Computation of the constant term when α = π/2

The heat kernel in the quadrant can be computed directly from the
h.k of a half-line

In polar coordinates with u = re iφ, v = r ′e iφ
′
:

pC (t, u, v)

=
e−

r2+r′2
4t

2πt

(
cosh

(
rr ′ cos(φ′ − φ)

2t

)
− cosh

(
rr ′ cos(φ′ + φ)

2t

))
After many computations we obtain the contribution for
α = π/2 is

pft=0 TrL2(Sπ/2,g)

(
M 2

π/2
(1+log(r))e−t∆π/2

)
= − 1

4π
− γe

4π
.
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