Biography

Ilige S. Hage is an assistant professor of Mechanical Engineering at Notre Dame University –Louaize (NDU). Dr. Hage received her doctorate degree in Mechanical Engineering (Materials and Manufacturing) from the American University of Beirut, Lebanon in 2015; her master’s degree in Mechanical Engineering (Materials and Manufacturing) from Ecole Centrale de Nantes (ECN), France in 2011 and her bachelor degree in Mechanical Engineering from the Lebanese University (ULFG2), Roumieh in 2011. Dr. Hage currently teaches courses in Notre Dame University after joining in spring 2017 as an assistant professor. Her research interests are in the area of materials processing, manufacturing, biomechanics, simulation and modeling with emphasis on biomaterials.

Peer-reviewed Journals

International

- Hage, R. Hamade: an experimentally validated combined stiffness formulation for a finite domain considering volume fraction, shape, orientation, and location of a multiple inclusions. Comptes Rendus. Mécanique 348 (2), 113-135
- C. Seif, I. Hage, R. Hamade. Utilizing the drill cutting lip to extract johnson cook flow stress coefficients for al6061-t6. CIRP Journal of Manufacturing Science and Technology 26, 26-40

• C. Seif, I. Hage, RM Hage, R. Hamade. Exploiting The Drill Cutting Lip to Quantify the Contributions of Process Parameters To Cutting Pressures. A Response Surface Analysis. Accepted. IJMR-37001

• C. Seif, I. Hage, R. Hamade. Extracting HCP Zerilli-Armstrong Material Parameters For Magnesium Alloy AZ31B From Orthogonal Cutting Tests. Journal of Materials Processing Technology, Accepted. PROTEC-D-20-01098R1

Peer-reviewed Conference Proceedings

International

• I. Hage, R. Hamade: Toward quantifying geometric microstructural differences between primary and secondary osteons via segmentation. In Biomedical Engineering (MECBME), 2014 Middle East Conference on (pp. 371-374). IEEE.

• I. Hage, R. Hamade: Structural Feature-attribute-based Segmentation of Optical Images of Bone Slices Using Optimized Pulse Coupled Neural Networks (PCNN). In ASME 2013 International Mechanical Engineering Congress and Exposition (pp. V03BT03A019-V03BT03A019). American Society of Mechanical Engineers.

• I. Hage, R. Hamade: Smart segmentation of Bone histology slides using Pulse coupled neural networks (PCNN) optimized by particle-swarm optimization (PSO). In 6th ECCOMAS Conference on Smart Structures and Materials 2013, Politecnico di Torino (pp. 24-26).

• C. Seif, I. Hage, F. Ismail, R. Hamade. A Design of Experiment to Study the Effects of Cutting Speed and Feed on the Generated Drilling Thrust and Torque in Aluminum Alloys. ASME 2017 International Mechanical Engineering Congress and Exposition, pp. V002T02A005

• I. Hage R. Hamade, C. Seif,. Statistically validated combined stiffness formulation for a finite composite domain considering volume fractions, shapes, orientations, locations, and number of multiple inclusions. ASME-IMECE2018-86231- V002T02A038

• C. Seif, I. Hage, R. Hamade. Modeling and experimental verification of torque and thrust forces generated by the conventional drill's chisel edge. ASME IMECE2018-86155 - V002T02A037

• C. Seif, I. Hage, R. Hamade. Determining cutting pressure coefficients for aluminum 6061-T6 using a small number of drilling experiments. ASME IMECE2018-86224 - V002T02A002

Chapters in Books

International
- Hage, R. Hamade: Micro-FEM Orthogonal Cutting Model for Bone Using Microscope Images Enhanced Via Artificial Intelligence. Procedia CIRP 2013;8:384-

Exhibitions, Competitions and Creative Work

Local
- I. Hage, R. Hamade: Distribution of Area Fraction of Pores in Cortical Bone’s Pericortical and Intracortical Regions. 5th AUB biomedical research day, Saturday, February 21, 2015, American University of Beirut. Award for outstanding poster presentation.
- CNRS research project approved, entitled: Human joints impact measurement and optimization (HJIMO) Total budget in Million LBP 32