NDU Math Competition for High School students 2019

Notre Dame University, Lebanon

Department of Mathematics and Statistics

You have 12 Questions

March 18, 2019

Question 1

Solve for x the equation

$$
|3-2| x|\mid=x+1
$$

You have 5 minutes

Question 2

Calculate the following limit

$$
\lim _{x \rightarrow \infty} \sqrt{x^{2}+x+1}-x
$$

You have 5 minutes

Question 3

The line $y=-3 x+20$ is tangent to the graph of $y=f(x)$ at the point where $x=8$. Find

$$
\lim _{x \rightarrow 8} \frac{f(x)+4}{\sqrt[3]{x}-2}
$$

You have 7 minutes

Question 4

$$
\text { If } 134^{m}=8 \text { and } 67^{n}=8, \text { find } \frac{1}{m}-\frac{1}{n} .
$$

\square
You have 8 minutes

Question 5

Let f be a decreasing function defined on $(0,+\infty)$. Find all values of a in \mathbb{R} that satisfy

$$
f\left(2 a^{2}+a+1\right)<f\left(3 a^{2}-4 a+1\right)
$$

You have 8 minutes

Question 6

ABCD is a a square such that $A B=2 . E$ is the midpoint of $[A D]$. Find the area of $C D E F$.

You have 8 minutes

Question 7

Simplify

$-\frac{1}{2} \sqrt{1-\cos (4 x)} \cos (x)+\cos \left(\frac{\pi}{4}\right)\left(\sin (x) \tan ^{2}(x)(1+\cos (2 x))\right)$
for $\frac{\pi}{4}<x<\frac{\pi}{2}$.

You have 6 minutes

Question 8

We have two concentric circles of radii 6 and 10 respectively. Find the length of the chord $A B$.

\square
You have 6 minutes

Question 9

Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Assume that there exists a $C>0$ and some $\alpha>0$, such that f satisfies

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha+1}
$$

for all $x, y \in \mathbb{R}$. Prove that f is constant.

You have 8 minutes

Question 10

Show that

$$
f(x)=x^{3}+2 x+k
$$

has exactly one real root, regardless of the value of

$$
k \in \mathbb{R}
$$

\square
You have 8 minutes

Question 11

Let A be a point in the square $B C D E$. Calculate x.

You have 8 minutes

Question 12

$$
\begin{gathered}
\quad \text { Let } \\
\left\{\begin{array}{l}
u_{1}=1 \\
u_{n+1}=3 u_{n}^{2}, \quad \text { for } n \geq 1 .
\end{array}\right.
\end{gathered}
$$

Find $\lim _{n \rightarrow \infty} u_{n}$ if it exists, or prove that $\left(u_{n}\right)$ is divergent.
\square
You have 10 minutes

