NDU Math Competition for High School students

Notre Dame University, Lebanon

Department of Mathematics and Statistics

You have 17 Questions

March 12, 2018

Question 1

Let $x \in \mathbb{R}$ such that $x+\frac{1}{x} \in \mathbb{Z}$. Show that

$$
x^{2}+\frac{1}{x^{2}} \in \mathbb{Z}
$$

\square
You have 5 minutes

Question 2

A car travels from a to b at an average speed of 50 $\mathrm{km} /$ hour. At what average speed would it have to travel from b to a to average $60 \mathrm{~km} /$ hour for the whole trip?
\square
You have 5 minutes

Question 3

Let f be a real and continuous function satisfying $f(2 x)=4 f(x)$ for all x. If $\int_{0}^{1} f(x) d x=1$, find

$$
\int_{1}^{2} f(x) d x
$$

\square
You have 5 minutes

Question 4

Evaluate the following integral

$$
I=\int_{0}^{a} \frac{f(x) d x}{f(x)+f(a-x)}
$$

\square
You have 5 minutes

Question 5

How many digits are in the number 20^{15} ?
\square
You have 5 minutes

Question 6

Find the last 3 digits of the sum

$$
1+11+111+1111+\cdots+11111 \cdots 11111
$$ where the last number has 99 ones.

You have 5 minutes

Question 7

Find the length of side $A B$ in the figure below.

\square
You have 5 minutes

Question 8

Find all values of $a \in \mathbb{R}$ for which the following system has infinitely many solutions:

$$
\left\{\begin{array}{r}
x+(2 a+1) y=0 \\
4 x-(a-13) y=0
\end{array}\right.
$$

You have 5 minutes

Question 9

Let $p_{a}(x)=x^{2}-2 x+a^{2}$ where $a \in \mathbb{R}$ is a real parameter. Define the set

$$
S=\left\{x \in \mathbb{R} ; p_{a}(x)=0, \text { for some } a \in \mathbb{R}\right\}
$$ Determine the set S explicitly.

\square

[^0]
Question 10

There are 4 urns and 10 identical balls. Determine the total number of possibilities one can distribute these 10 balls among these 4 urns. So for instance,
urn 1: 4 balls
urn 2: 3 balls
urn 3: 3 balls
urn 4: 0 balls
This would correspond to one possibility. What is the total number of possibilities?
\square

[^1]
Question 11

Let $f(x)=2 x-e^{x}$. Find the maximum value of $f(x)$ on the interval $[0,1]$. At which value(s) of x is it attained?

\square
You have 2 minutes

Question 12

Let $f(x)=\sqrt[3]{2 x+1}$ and $g(x)=x+b$ both defined on $]-\infty,+\infty[$. If $h(x)=f \circ g(x)$ passes by the point (1, 2), calculate b.
\square

[^2]
Question 13

For $\frac{\pi}{2} \leq x \leq \pi$, simplify the expression
$2\left(1-\sin ^{2} x\right) \frac{\sqrt{1-\cos ^{2} x}}{\sin x}+\frac{\sqrt{1-\sin ^{2} x}}{\cos x}$
\square
You have 5 minutes

Question 14

The area of a triangle is bounded by the lines $y=2 x, y=0$, and $y=-0.5 x+k$ is $80 \mathrm{~cm}^{2}$. Solve for $k>0$.
\square
You have 7 minutes

Question 15

> Let P be a polynomial such that $P\left(x^{2}+1\right)=-2 x^{4}+5 x^{2}+6$. Find $P\left(-x^{2}+3\right)$.
\square
You have 5 minutes

Question 16

A square is inscribed in a circle that is inscribed in an equilateral triangle of side $a=2$. Calculate the area of the square.

\square
You have 8 minutes

Question 17

If $\sin \theta=x \cos \phi$ and $\cos \theta=y \sin \phi$, what is the value of $\cos ^{2} \phi$ in terms of x and y ?

You have 3 minutes

[^0]: You have 5 minutes

[^1]: You have 8 minutes

[^2]: You have 3 minutes

