Rescaling and Parallel Time Integration for systems of Order
Differential Equations

Nabil Nassif
Mathematics Department, American University of Beirut

Abstract
We consider a system of time-dependent Ordinary Differential Equations (ODE’s), where one seeks
\[Y : [0, \infty) \to \mathbb{R}^k \]
\[\frac{dY}{dt} = F(Y), \quad 0 < t \leq T \leq \infty, \quad Y(0) = Y_0. \]

(1)

Numerical (time) integration procedures to obtain approximate solutions to (1) are inherently sequential. All ODE’s solvers are based on algorithms that “advance” a numerical process from a time \(t_k \) to \(t_{k+1} \), where the sequence \(\{t_k\} \) is usually a “refined” uniform or adaptive subdivision of \([0,T]\). Time-Parallel methods become interesting when one seeks to reduce the excessively high computational time of (1), where the time of existence is of very large order \(T \approx \infty \). Time Parallelization is based on iterative Predictor-Corrector Schemes. Its success depends on appropriate predictions of the solution at the beginning of each “time slice” of some coarse grid \(\{[T_{n-1}, T_n]\} \), whereas \([0,T] = \bigcup_{n=1}^{N} [T_{n-1}, T_n] \). Good predictions would automatically reduce the total number of iterations \(N_{it} \), \((N_{it} \leq N)\). A key performance indicator as to the high performance of the method should verify the criterion: \(N_{it} \ll N \), i.e. the number of iterations should be much less than the number of slices.

On the basis of a multi-scaling technique that rescales both the variables \(Y \) and \(t \) on every slice, we introduce a concept of similarity which leads to a “ratio property” in the case when

\[(F(Y))_i = \sum_j a_{ij} Y_i^{k_{i,j}} Y_j^{l_{i,j}}. \]

Such situations occur when solving diffusion reaction problems an also Lotka-Voltera predators-preys logistics models.

In this paper, these concepts are applied to a second order initial value model:

\[y'' - |y'|^{q-1} y' + |y|^{p-1} y = 0, \quad t > 0, \quad y(0) = y_{1,0}, \quad y'(0) = y_{2,0}. \]

(2)

This ODE describes the motion of a membrane. Specifically, when

\[p \leq q \leq \frac{2p}{p+1} \quad \text{and} \quad p < 1, \]

(3)

the existence of the solution is global with a non-oscillatory blow-up at \(\infty \), i.e.:

\[\lim_{t \to \infty} |y(t)| = \lim_{t \to \infty} |y'(t)| = \infty, \]

(4)

the roots of \(y \) and \(y' \) being both countably infinite sets.

We show through slices rescaling, that similarity can be obtained with a ratio property leading to an efficient parallel time solver for (2).