Cohomology of Algebraic Plane Curves

Nancy Abdallah

Université Nice Sophia Antipolis, France.

Conference on Differential Geometry, Beirut.

April 30, 2015

- Notations
- Goals
- 2 Koszul Complexes and Singularities
 - Koszul Complex
 - Koszul Complex and Singularities of Curves

3 Hodge Theory

- Mixed Hodge Structures
- Hodge Theory of Plane Curve Complement

- Notations
- Goals
- 2 Koszul Complexes and Singularities
 - Koszul Complex
 - Koszul Complex and Singularities of Curves

3 Hodge Theory

- Mixed Hodge Structures
- Hodge Theory of Plane Curve Complement

- $S = \mathbb{C}[x, y, z] = \bigoplus_{r \ge 0} S_r$, and $f \in S_N$.
- $J_f = (f_x, f_y, f_z)$ the Jacobian ideal of f.
- The graded Milnor algebra of *f* is given by:

$$M(f) = S/J_f = \oplus_{r\geq 0} M(f)_r.$$

For any graded module *M* = ⊕_{s≥s₀}*M_s* over a C-algebra of finite type, define the *Poincaré Series* by

$$P(M)(t) = \sum_{s \ge s_0} (\dim_{\mathbb{C}} M_s) t^s.$$

- $S = \mathbb{C}[x, y, z] = \bigoplus_{r \ge 0} S_r$, and $f \in S_N$.
- $J_f = (f_x, f_y, f_z)$ the Jacobian ideal of f.
- The graded Milnor algebra of *f* is given by:

$$M(f) = S/J_f = \oplus_{r\geq 0} M(f)_r.$$

For any graded module *M* = ⊕_{s≥s₀}*M_s* over a C-algebra of finite type, define the *Poincaré Series* by

$$P(M)(t) = \sum_{s \ge s_0} (\dim_{\mathbb{C}} M_s) t^s.$$

- $S = \mathbb{C}[x, y, z] = \bigoplus_{r \ge 0} S_r$, and $f \in S_N$.
- $J_f = (f_x, f_y, f_z)$ the Jacobian ideal of f.
- The graded Milnor algebra of *f* is given by:

$$M(f) = S/J_f = \oplus_{r \ge 0} M(f)_r.$$

For any graded module *M* = ⊕_{s≥s₀}*M_s* over a C-algebra of finite type, define the *Poincaré Series* by

$$P(M)(t) = \sum_{s \ge s_0} (\dim_{\mathbb{C}} M_s) t^s.$$

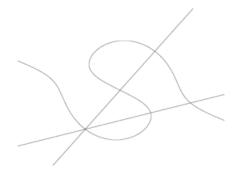
- $S = \mathbb{C}[x, y, z] = \bigoplus_{r \ge 0} S_r$, and $f \in S_N$.
- $J_f = (f_x, f_y, f_z)$ the Jacobian ideal of f.
- The graded Milnor algebra of *f* is given by:

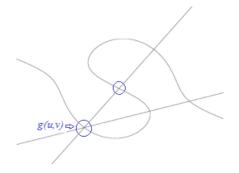
$$M(f) = S/J_f = \oplus_{r \ge 0} M(f)_r.$$

For any graded module *M* = ⊕_{s≥s₀}*M_s* over a ℂ-algebra of finite type, define the *Poincaré Series* by

$$P(M)(t) = \sum_{s \ge s_0} (\dim_{\mathbb{C}} M_s) t^s.$$

Let $C \subset \mathbb{P}^2$: f = 0 be a curve having an isolated singularity at a point P,





• the Milnor number of f at P is given by

$$\mu(\mathcal{C},\mathcal{P}) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{\mathcal{P}}}{J_{g}}.$$

• the *Tjurina number* of *f* at *P* is given by

$$\tau(C,P) = \dim_{\mathbb{C}} \frac{O_P}{(g,J_g)}.$$

• The Milnor (Tjurina) number of the curve *C* is the sum of the Milnor (Tjurina) numbers of all the singularities of *C*.

• the Milnor number of f at P is given by

$$\mu(\mathcal{C},\mathcal{P}) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{\mathcal{P}}}{J_{g}}.$$

• the Tjurina number of f at P is given by

$$au(\mathcal{C},\mathcal{P}) = \dim_{\mathbb{C}} rac{\mathcal{O}_{\mathcal{P}}}{(g,J_g)}.$$

• The Milnor (Tjurina) number of the curve *C* is the sum of the Milnor (Tjurina) numbers of all the singularities of *C*.

• the Milnor number of f at P is given by

$$\mu(\mathcal{C},\mathcal{P}) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{\mathcal{P}}}{J_{g}}.$$

• the Tjurina number of f at P is given by

$$au(\mathcal{C},\mathcal{P}) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{\mathcal{P}}}{(g,J_g)}.$$

• The Milnor (Tjurina) number of the curve *C* is the sum of the Milnor (Tjurina) numbers of all the singularities of *C*.

Example

• Node or A_1 singularity $\mu(C, P) = \tau(C, P) = 1.$

Example

• Ordinary triple point or D_4 singularity $\mu(C, P) = \tau(C, P) = 4.$

Introduction

Koszul Complexes and Singularities

Hodge Theory

 Let r(C, P) be the number of irreducible branches of the germ (C, P), the δ-invariant of C at the point P is defined by

$$\delta(\boldsymbol{C},\boldsymbol{P}) = \frac{1}{2}(\mu(\boldsymbol{C},\boldsymbol{P}) + r(\boldsymbol{C},\boldsymbol{P}) - 1).$$

Example

- For a node, r = 2, and hence the $\delta = 1$.
- For an ordinary triple point r = 3, and hence the $\delta = 3$.

• The genus *g* of *C* is given by

$$g=\frac{(N-1)(N-2)}{2}-\sum_k\delta(C,P_k).$$

Introduction

Koszul Complexes and Singularities

Hodge Theory

 Let r(C, P) be the number of irreducible branches of the germ (C, P), the δ-invariant of C at the point P is defined by

$$\delta(C, P) = \frac{1}{2}(\mu(C, P) + r(C, P) - 1).$$

Example

- For a node, r = 2, and hence the $\delta = 1$.
- For an ordinary triple point r = 3, and hence the $\delta = 3$.

• The genus *g* of *C* is given by

$$g=\frac{(N-1)(N-2)}{2}-\sum_k\delta(C,P_k).$$

Introduction

 Let r(C, P) be the number of irreducible branches of the germ (C, P), the δ-invariant of C at the point P is defined by

$$\delta(C, P) = \frac{1}{2}(\mu(C, P) + r(C, P) - 1).$$

Example

- For a node, r = 2, and hence the $\delta = 1$.
- For an ordinary triple point r = 3, and hence the $\delta = 3$.

• The genus g of C is given by

$$g=\frac{(N-1)(N-2)}{2}-\sum_k\delta(C,P_k).$$

• Let $AR(f) = \bigoplus_{r \ge 0} AR(f)_r$ be a graded *S*-module, where $AR(f)_r = \{(a, b, c) \in S_r^3 : af_x + bf_y + cf_z = 0\}$. $KR(f) \subset AR(f)$ the submodule of Koszul relations or trivial relations spanned by the relations of the form $(f_i)f_j + (-f_j)f_i = 0$. The quotient module ER(f) = AR(f)/KR(f) is called the module of nontrivial syzygies or essential relations.

- Relation between the Milnor algebra and the singularities of the curve C ⊂ P² : f = 0.
- Relation between the Hodge theory of the complement
 U = P² \ C and the singularities of C.

- Relation between the Milnor algebra and the singularities of the curve C ⊂ P² : f = 0.
- Relation between the Hodge theory of the complement
 U = P² \ C and the singularities of C.

- Notations
- Goals

2 Koszul Complexes and Singularities

- Koszul Complex
- Koszul Complex and Singularities of Curves

3 Hodge Theory

- Mixed Hodge Structures
- Hodge Theory of Plane Curve Complement

Koszul Complex

Let
$$\Omega^{\rho} = \{\sum_{l} c_{l} dx_{i_{1}} \wedge \cdots \wedge dx_{i_{\rho}}\},\$$

where $l = (i_{1}, \cdots, i_{\rho})$, with $x_{i_{j}} \in \{x, y, z\},\$ and $c_{l} \in \mathbb{C}[x, y, z].$

For homogeneous polynomials f_0, f_1, f_2 , the Koszul complex is given by

$$K^*(f_0, f_1, f_2): 0 \to \Omega^0 \xrightarrow{\omega \wedge} \Omega^1 \xrightarrow{\omega \wedge} \Omega^2 \xrightarrow{\omega \wedge} \Omega^3 \to 0$$

where $\omega = f_0 dx + f_1 dy + f_2 dz$.

Example

Let $f \in S_N$, f_x , f_y , f_z the partial derivatives of f, then,

$$\mathcal{K}^*(\mathbf{f}) = \mathcal{K}^*(f_x, f_y, f_z) : \mathbf{0} \to \Omega^0 \xrightarrow{\omega \wedge} \Omega^1 \xrightarrow{\omega \wedge} \Omega^2 \xrightarrow{\omega \wedge} \Omega^3 \to \mathbf{0}$$

with $\omega = df = f_x dx + f_y dy + f_z dz$, is the *Koszul Complex* of the partial derivatives of *f*.

Remark

 $im(\Omega^2 \xrightarrow{\omega \wedge} \Omega^3) = J_f$, and therefore $H^3(K^*(\mathbf{f})) = M(f)$, and $H^2(K^*(\mathbf{f})) = ER(f)$, in particular $H^3(K^*(\mathbf{f}))_{k+3} = M(f)_k$, and $H^2(K^*(\mathbf{f}))_{k+2} = ER(f)_k$ for $k \ge 0$.

Example

Let $f \in S_N$, f_x , f_y , f_z the partial derivatives of f, then,

$$\mathcal{K}^*(\mathbf{f}) = \mathcal{K}^*(f_x, f_y, f_z) : \mathbf{0} \to \Omega^0 \xrightarrow{\omega \wedge} \Omega^1 \xrightarrow{\omega \wedge} \Omega^2 \xrightarrow{\omega \wedge} \Omega^3 \to \mathbf{0}$$

with $\omega = df = f_x dx + f_y dy + f_z dz$, is the *Koszul Complex* of the partial derivatives of *f*.

Remark

 $im(\Omega^2 \xrightarrow{\omega \wedge} \Omega^3) = J_f$, and therefore $H^3(K^*(\mathbf{f})) = M(f)$, and $H^2(K^*(\mathbf{f})) = ER(f)$, in particular $H^3(K^*(\mathbf{f}))_{k+3} = M(f)_k$, and $H^2(K^*(\mathbf{f}))_{k+2} = ER(f)_k$ for $k \ge 0$.

Koszul Complex and Singularities

Proposition (Kyoji Saito, 1974)

Let $\Sigma = V(f_x, f_y, f_z) \subset \mathbb{P}^2$ then,

$$H^{3-k}(K^*(f)) = 0 \text{ for } k > \dim(\Sigma) + 1,$$

where $K^*(f)$ is the Koszul complex of the partial derivatives of f.

Smooth Case

 $f \in S_N$, $C \subset \mathbb{P}^2$: f = 0 a smooth curve, then $H^{3-k}(K^*(\mathbf{f})) = 0$ for all k > 0, and the Poincaré series is completely determined, namely

$$P(M(f))(t) = t^{-3}P(H^{3}(K^{*}(\mathbf{f})))(t) = \frac{(1-t^{N-1})^{3}}{(1-t)^{3}}.$$

Remark

The Poincaré series depends only of the degree of f, and it is a polynomial of degree 3N - 6 with the property $M(f)_k = M(f)_{3N-6-k}$.

Smooth Case

 $f \in S_N$, $C \subset \mathbb{P}^2$: f = 0 a smooth curve, then $H^{3-k}(K^*(\mathbf{f})) = 0$ for all k > 0, and the Poincaré series is completely determined, namely

$$P(M(f))(t) = t^{-3}P(H^3(K^*(\mathbf{f})))(t) = \frac{(1-t^{N-1})^3}{(1-t)^3}.$$

Remark

The Poincaré series depends only of the degree of f, and it is a polynomial of degree 3N - 6 with the property $M(f)_k = M(f)_{3N-6-k}$.

Singular Case

If $C \subset \mathbb{P}^2$ has only isolated singularities, then $H^{3-k}(K^*(\mathbf{f})) = 0$ for k > 1, and the nonzero cohomology groups are related as follows:

$$t^{N} \mathcal{P}(H^{2}(\mathcal{K}^{*}(\mathbf{f})))(t) = \mathcal{P}(H^{3}(\mathcal{K}^{*}(\mathbf{f}))(t) - t^{3} \frac{(1 - t^{N-1})^{3}}{(1 - t)^{3}})$$

Proposition (Choudary, Dimca, 1994)

The sequence dim $M(f)_k$ decreases for $k \ge 2(N-2)$ and becomes constant for $k \ge 3N - 5$. More precisely, for $k \ge 3N - 5$, dim $M(f)_k = \tau(C)$.

In 2011, Dimca and Sticlaru introduced three integers, the *co-incidence threshold* ct(C), the *stability threshold* st(C), and the *minimal degree of syzygies* mdr(C).

Proposition (Choudary, Dimca, 1994)

The sequence dim $M(f)_k$ decreases for $k \ge 2(N-2)$ and becomes constant for $k \ge 3N - 5$. More precisely, for $k \ge 3N - 5$, dim $M(f)_k = \tau(C)$.

In 2011, Dimca and Sticlaru introduced three integers, the *co-incidence threshold* ct(C), the *stability threshold* st(C), and the *minimal degree of syzygies* mdr(C).

(i) $ct(C) = max\{q : \dim M(f)_k = \dim M(f_s)_k \text{ for all } k \le q\},$ with $f_s \in S_N$ such that C_s : $f_s = 0$ is a smooth curve in \mathbb{P}^2 .

(ii) $st(C) = min\{q : \dim M(f)_k = \tau(C) \text{ for all } k \ge q\}.$

(iii) $mdr(C) = min\{q : ER(f)_q \neq 0\}.$

- (i) $ct(C) = max\{q : \dim M(f)_k = \dim M(f_s)_k \text{ for all } k \le q\},$ with $f_s \in S_N$ such that C_s : $f_s = 0$ is a smooth curve in \mathbb{P}^2 .
- (ii) $st(C) = min\{q : \dim M(f)_k = \tau(C) \text{ for all } k \ge q\}.$

(iii) $mdr(C) = min\{q : ER(f)_q \neq 0\}.$

- (i) $ct(C) = max\{q : \dim M(f)_k = \dim M(f_s)_k \text{ for all } k \le q\},$ with $f_s \in S_N$ such that C_s : $f_s = 0$ is a smooth curve in \mathbb{P}^2 .
- (ii) $st(C) = min\{q : \dim M(f)_k = \tau(C) \text{ for all } k \ge q\}.$

(iii) $mdr(C) = min\{q : ER(f)_q \neq 0\}.$

- (i) $ct(C) = max\{q : \dim M(f)_k = \dim M(f_s)_k \text{ for all } k \le q\},$ with $f_s \in S_N$ such that C_s : $f_s = 0$ is a smooth curve in \mathbb{P}^2 .
- (ii) $st(C) = min\{q : \dim M(f)_k = \tau(C) \text{ for all } k \ge q\}.$

(iii)
$$mdr(C) = min\{q : ER(f)_q \neq 0\}.$$

- (i) $ct(C) = max\{q : \dim M(f)_k = \dim M(f_s)_k \text{ for all } k \le q\},$ with $f_s \in S_N$ such that C_s : $f_s = 0$ is a smooth curve in \mathbb{P}^2 .
- (ii) $st(C) = min\{q : \dim M(f)_k = \tau(C) \text{ for all } k \ge q\}.$

(iii)
$$mdr(C) = min\{q : ER(f)_q \neq 0\}.$$

- (i) $ct(C) = max\{q : \dim M(f)_k = \dim M(f_s)_k \text{ for all } k \le q\},$ with $f_s \in S_N$ such that C_s : $f_s = 0$ is a smooth curve in \mathbb{P}^2 .
- (ii) $st(C) = min\{q : \dim M(f)_k = \tau(C) \text{ for all } k \ge q\}.$

(iii)
$$mdr(C) = min\{q : ER(f)_q \neq 0\}.$$

Nodal Curves

Proposition (Dimca, Sticlaru, 2011)

Let C : f = 0 be a nodal curve of degree N in \mathbb{P}^2 . Then one has $ct(C) \ge 2N - 4$, and

$$\dim M(f)_{2N-3} = n(C) + \sum_{j=1}^r g_j$$

where $n(C) = \tau(C)$ is the total number of nodes of C and g_j are the genera of the irreducible components C_j of C whose number is r.

Let
$$C: f = x(x^3 + y^3 + z^3) = 0$$
.
dim $M(f)_{2N-3} = 3 + 1 = 4$, $st(C) \le 3N - 5 = 7$ and $ct(C) \ge 2N - 4 = 4$. By Singular,

$$P(M(t))(t) = 1 + 3t + 6t^{2} + 7t^{3} + 6t^{4} + 4t^{5} + 3(t^{6} + t^{7} + \cdots),$$

and hence ct(C) = 4 and st(C) = 6.

Proposition (Dimca, Sticlaru, 2011)

Let C : f = 0 be nodal curve of degree N in \mathbb{P}^2 . Then one has $ct(C) \ge 2N - 4$, and

$$\dim M(f)_{2N-3} = n(C) + \sum_{j=1}^r g_j$$

where $n(C) = \tau(C)$ is the total number of nodes of C and g_j are the genera of the irreducible components C_j of C whose number is r.

Corollary (Dimca, Sticlaru, 2011)

If C is a rational nodal curve, then the Poincaré series of the Milnor algebra is completely determined, and $st(C) \le 2N - 3$ unless C is a generic line arrangement then st(C) = 2N - 4.

Proposition (Dimca, Sticlaru, 2011)

Let C : f = 0 be nodal curve of degree N in \mathbb{P}^2 . Then one has $ct(C) \ge 2N - 4$, and

$$\dim M(f)_{2N-3} = n(C) + \sum_{j=1}^{r} g_j$$

where $n(C) = \tau(C)$ is the total number of nodes of C and g_j are the genera of the irreducible components C_j of C whose number is r.

Corollary (Dimca, Sticlaru, 2011)

If C is a rational nodal curve, then the Poincaré series of the Milnor algebra is completely determined, and $st(C) \le 2N - 3$ unless C is a generic line arrangement then st(C) = 2N - 4.

Let C : f = xyz(x + y + z) = 0. *C* has 6 nodes, P(M(f)) is all determined and we have st(C) = 2N - 4 = 4 and $ct(C) \ge 4$. Therefore

$$P(M(f))(t) = 1 + 3t + 6t^2 + 7t^3 + 6(t^4 + t^5 + \cdots),$$

which implies that ct(C) = 4.

Example

Let
$$C : f = x^{N-1}y + z^N = 0$$
, then $xf_x - (N-1)yf_y = 0$.
Therefore $mdr(C) = 1$, and $ct(C) = N - 1 < 2N - 4$.

Let C : f = xyz(x + y + z) = 0. *C* has 6 nodes, P(M(f)) is all determined and we have st(C) = 2N - 4 = 4 and $ct(C) \ge 4$. Therefore

$$P(M(f))(t) = 1 + 3t + 6t^2 + 7t^3 + 6(t^4 + t^5 + \cdots),$$

which implies that ct(C) = 4.

Example

Let
$$C : f = x^{N-1}y + z^N = 0$$
, then $xf_x - (N-1)yf_y = 0$.
Therefore $mdr(C) = 1$, and $ct(C) = N - 1 < 2N - 4$.

Question: What happens in the general case?

Generalization of these results to curves with ordinary double and triple points

Question: What happens in the general case?

Generalization of these results to curves with ordinary double and triple points

Theorem

Let *C* be a plane curve in \mathbb{P}^2 given by $f = 0, f \in S_N$ with *n* nodes (*A*₁) and *t* triple points (*D*₄), then $\tau = n + 4t$. Let $C = \bigcup_{j=1,r} C_j, U = \mathbb{P}^2 \setminus C$, and $g_j = g(C_j)$.

(A) $0 \leq \dim M(f)_{2N-3} - \tau \leq \sum_{j=1}^{r} g_j$. In particular,

(i) If all $g_i = 0$, one has dim $M(f)_{2N-3} = \tau$, i.e. $st(C) \le 2N - 3$.

(ii) dim $M(f)_{2N-3} - \tau = \sum_{j=1}^{r} g_j$ if and only if $H^2(U)$ satisfies $F^2 H^2(U) = P^2 H^2(U)$.

Theorem

Let *C* be a plane curve in \mathbb{P}^2 given by $f = 0, f \in S_N$ with *n* nodes (A₁) and *t* triple points (D₄), then $\tau = n + 4t$. Let $C = \bigcup_{j=1,r} C_j, U = \mathbb{P}^2 \setminus C$, and $g_j = g(C_j)$. (A) $0 \leq \dim M(f)_{2N-3} - \tau \leq \sum_{j=1}^r g_j$. In particular,

(i) If all $g_i = 0$, one has dim $M(f)_{2N-3} = \tau$, i.e. $st(C) \le 2N - 3$.

 (ii) dim *M*(*f*)_{2N-3} − τ = ∑^r_{j=1} g_j if and only if H²(U) satisfies F²H²(U) = P²H²(U).

Theorem

Let C be a plane curve in \mathbb{P}^2 given by $f = 0, f \in S_N$ with n nodes (A₁) and t triple points (D₄), then $\tau = n + 4t$. Let $C = \bigcup_{j=1,r} C_j, U = \mathbb{P}^2 \setminus C$, and $g_j = g(C_j)$. (A) $0 \leq \dim M(f)_{2N-3} - \tau \leq \sum_{j=1}^r g_j$. In particular, (i) If all $g_i = 0$, one has $\dim M(f)_{2N-3} = \tau$, i.e. $st(C) \leq 2N - 3$.

(ii) dim $M(f)_{2N-3} - \tau = \sum_{j=1}^{r} g_j$ if and only if $H^2(U)$ satisfies $F^2 H^2(U) = P^2 H^2(U)$.

Theorem

Let *C* be a plane curve in \mathbb{P}^2 given by $f = 0, f \in S_N$ with *n* nodes (A₁) and *t* triple points (D₄), then $\tau = n + 4t$. Let $C = \bigcup_{j=1,r} C_j, U = \mathbb{P}^2 \setminus C$, and $g_j = g(C_j)$. (A) $0 \le \dim M(f)_{2N-3} - \tau \le \sum_{j=1}^r g_j$. In particular, (i) If all $g_i = 0$, one has $\dim M(f)_{2N-3} = \tau$, i.e. $st(C) \le 2N - 3$.

(ii) dim $M(f)_{2N-3} - \tau = \sum_{j=1}^{r} g_j$ if and only if $H^2(U)$ satisfies $F^2 H^2(U) = P^2 H^2(U)$.

Theorem

Let C be a plane curve in \mathbb{P}^2 given by $f = 0, f \in S_N$ with n nodes (A_1) and t triple points (D_4) , then $\tau = n + 4t$. Let $C = \bigcup_{j=1,r} C_j, U = \mathbb{P}^2 \setminus C$, and $g_j = g(C_j)$. (A) $0 \leq \dim M(f)_{2N-3} - \tau \leq \sum_{j=1}^r g_j$. In particular, (i) If all $g_i = 0$, one has $\dim M(f)_{2N-3} = \tau$, i.e. $st(C) \leq 2N - 3$. (ii) $\dim M(f)_{2N-3} - \tau = \sum_{j=1}^r g_j$ if and only if $H^2(U)$ satisfies $F^2 H^2(U) = P^2 H^2(U)$.

Let
$$C : f = (x^3 + y^3 + z^3)^3 + (x^3 + 2y^3 + 3z^3)^3 = 0$$
. *C* is the union of 3 smooth curves, and have 9 triple points as singularities. Using Singular we can find dim $M(f)_{16} = \tau = 36$. Hence, one has a strict inequality in (*A*)

dim
$$M(f)_{16} - au = 0 < 3 = \sum_{j=1}^{3} g_j.$$

Moreover, the inequalities in (B) in this case are

$$8\leq 8\leq 9+2.$$

Consider the line arrangements: Pappus configuration $A_1 : f = 0$

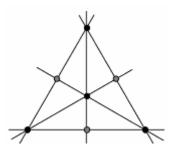
$$xyz(x-y)(y-z)(x-y-z)(2x+y+z)(2x+y-z)(-2x+5y-z) = 0$$

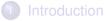
and \mathcal{A}_2 : g = 0

$$xyz(x+y)(x+3z)(y+z)(x+2y+z)(x+2y+3z)(4x+6y+6z) = 0.$$

Both arrangements have N = n = t = 9, $P(M(f))(t) - P(M(g))(t) = t^{12} \neq 0$, and ct(V(f)) = 11 and ct(V(g)) = 12.

Consider the curve $C : f = (x^2 - y^2)(y^2 - z^2)(x^2 - z^2) = 0$. *C* is the union of 6 lines, i.e $g_i = 0$ for $i = 1, \dots, 6$. Hence, dim $M(f)_9 = 4(4) + 3 = 19 = \tau(C)$, and dim $ER(f)_4 = 6 - 1 + 4 = 9$.





- Notations
- Goals
- 2 Koszul Complexes and Singularities
 - Koszul Complex
 - Koszul Complex and Singularities of Curves

3 Hodge Theory

- Mixed Hodge Structures
- Hodge Theory of Plane Curve Complement

Pure Hodge Structures

Definition

A (pure) Hodge structure of weight *m* on a finite dimensional \mathbb{Q} -vector space *H* consists of a decomposition of $H_{\mathbb{C}} = H \otimes \mathbb{C}$ into a direct sum of complex subspaces $H^{p,q}$, such that:

(i)
$$H_{\mathbb{C}} = \bigoplus_{p+q=m} H^{p,q}$$

(ii) $\overline{H^{p,q}} - H^{q,p}$

There exists a filtration on $H_{\mathbb{C}}$, called the *Hodge Filtration*, given by

$$F^{p}H_{\mathbb{C}}=\bigoplus_{s\geq p}H^{s,m-s}.$$

Pure Hodge Structures

Definition

A (pure) Hodge structure of weight *m* on a finite dimensional \mathbb{Q} -vector space *H* consists of a decomposition of $H_{\mathbb{C}} = H \otimes \mathbb{C}$ into a direct sum of complex subspaces $H^{p,q}$, such that:

(i)
$$H_{\mathbb{C}} = \bigoplus_{p+q=m} H^{p,q}$$

(ii) $\overline{H^{p,q}} = H^{q,p}$

There exists a filtration on $H_{\mathbb{C}}$, called the *Hodge Filtration*, given by

$$F^{p}H_{\mathbb{C}}=\bigoplus_{s\geq p}H^{s,m-s}.$$

Mixed Hodge Structures

Definition

A mixed Hodge structure (MHS) is a triplet (H, W, F) where:

- (i) *H* is a finite dimensional \mathbb{Q} -vector space;
- (ii) W is a finite increasing filtration called the weight filtration

$$0 \subset W_{s}H \subset W_{s+1}H \subset \cdots \subset W_{t}H = H$$

(iii) *F* is a finite decreasing filtration on $H_{\mathbb{C}}$ called the *Hodge filtration*

$$H \supset F^{p}H \supset F^{p+1}H \supset \cdots \supset F^{q}H \supset 0$$

such that $(Gr_k^W H, F)$ is a Hodge structure of weight k for all k.

The induced filtration is given by

$$F^{p}(Gr_{k}^{W}H)_{\mathbb{C}} = (F^{p}H_{\mathbb{C}} \cap W_{k}H_{\mathbb{C}} + W_{k-1}H_{\mathbb{C}})/W_{k-1}H_{\mathbb{C}}.$$

When (H, W, F) is a MHS we can define the *mixed Hodge numbers* by

$$h^{p,q}(H) = \dim Gr^p_F Gr^W_{p+q} H_{\mathbb{C}}.$$

Theorem (Deligne 1971)

Let X be a quasi-projective variety, then $H^*(X, \mathbb{Q})$ has a MHS, such that for all $m \ge 0$,

• The weight filtration W on $H^m(X, \mathbb{Q})$ satisfies

$$0 = W_{-1} \subset W_0 \subset \cdots \subset W_{2m} = H^m(X; \mathbb{Q});$$

for $m \ge n = \dim X$, we also have $W_{2n} = \cdots = W_{2m}$;

 The Hodge filtration F on H^m(X; C) satisfies H^m(X; C) = F⁰ ⊃ · · · ⊃ F^{m+1} = 0. For n = dim X, we also have Fⁿ⁺¹ = 0.

Theorem (Deligne, 1971)

- If X is a smooth variety, then W_{m-1}H^m(X, Q) = 0 (i.e., all weights on H^m(X; Q) are ≥ m) and W_mH^m(X, Q) = j*H^m(X, Q) for any compactification j : X ↔ X;
- If X is a projective variety, then W_mH^m(X, Q) = H^m(X, Q) (i.e., all weights on H^m(X; Q) are ≤ m) and W_{m-1} = kerp* for any proper map p : X̃ → X with X̃ smooth.

Example

If X is a smooth projective variety, then the cohomology group $H^m(X, \mathbb{Q})$ has a pure Hodge structure of weight *m*, for all $m \ge 0$.

Theorem (Deligne, 1971)

- If X is a smooth variety, then W_{m-1}H^m(X, Q) = 0 (i.e., all weights on H^m(X; Q) are ≥ m) and W_mH^m(X, Q) = j*H^m(X, Q) for any compactification j : X ↔ X;
- If X is a projective variety, then W_mH^m(X, Q) = H^m(X, Q) (i.e., all weights on H^m(X; Q) are ≤ m) and W_{m-1} = kerp* for any proper map p : X̃ → X with X̃ smooth.

Example

If X is a smooth projective variety, then the cohomology group $H^m(X, \mathbb{Q})$ has a pure Hodge structure of weight *m*, for all $m \ge 0$.

Hodge Theory of Plane Curve Complement

Let $C \subset \mathbb{P}^2$ be a curve defined by f = 0 for $f \in S_N$, and $U = \mathbb{P}^2 \setminus C$.

In particular, for m = 2, the Hodge filtration is given by:

$$H^2(U) = F^0 = F^1 \supset F^2 \supset F^3 = 0$$

Theorem

Let $C \subset \mathbb{P}^2$ be a curve of degree N, and $U = \mathbb{P}^2 \setminus C$. Suppose that C has only n nodes and t triple points. Set $g_j = g(C_j)$, where the $\{C_j\}_j$ are the irreducible components of C whose number is r. Then one has

$$\dim Gr^1_F H^2(U,\mathbb{C}) = \sum_{j=1}^r g_j$$

and

dim
$$Gr_F^2 H^2(U, \mathbb{C}) = \frac{(N-1)(N-2)}{2} - t.$$

Remark

The weight filtration on $H^2(U)$ is:

$$0\subset W_3\subset W_4=H^2(U).$$

Corollary

(i)
$$h^{2,1}(H^2(U)) = h^{1,2}(H^2(U)) = \sum_{j=1}^r g_j.$$

(ii) $h^{2,2}(H^2(U)) = \frac{(N-1)(N-2)}{2} - \sum_{j=1}^r g_j - t.$
(iii) $b_2(U) = \frac{(N-1)(N-2)}{2} + \sum_{j=1}^r g_j - t$, where $b_2(U)$ denotes the second Betti number of the complement $U.$

In particular, it follows that $H^2(U)$ is pure of type (2, 2) when $g_j = 0$ for all j, a well known property in the case of line arrangements.

Remark

The weight filtration on $H^2(U)$ is:

$$0\subset W_3\subset W_4=H^2(U).$$

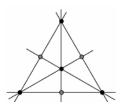
Corollary

(i)
$$h^{2,1}(H^2(U)) = h^{1,2}(H^2(U)) = \sum_{j=1}^r g_j.$$

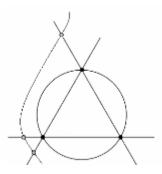
(ii) $h^{2,2}(H^2(U)) = \frac{(N-1)(N-2)}{2} - \sum_{j=1}^r g_j - t.$
(iii) $b_2(U) = \frac{(N-1)(N-2)}{2} + \sum_{j=1}^r g_j - t$, where $b_2(U)$ denotes the second Betti number of the complement $U.$

In particular, it follows that $H^2(U)$ is pure of type (2, 2) when $g_j = 0$ for all *j*, a well known property in the case of line arrangements.

 $g_i = 0$ for every $i = 1, \dots 6, N = 6$, and t = 4. Then, dim $H^1 = 5$, and we get dim $Gr_F^1 H^2(U, \mathbb{C}) = \dim \frac{F^1}{F^2} = 0$ and dim $Gr_F^2 H^2(U, \mathbb{C}) = \dim F^2 = 6$. Hence $b_2(U) = 6$.



$$C: xyz(x^2y + x^2z + y^2x + y^2z + z^2x + z^2y) = 0.$$
 It has 3 triple
points and 3 nodes. We have $g_1 = g_2 = g_3 = 0$, $g_4 = 1$, $N = 6$.
Then dim $H^1(U) = 3$, dim $Gr_F^1H^2(U, \mathbb{C}) = 1$ and
dim $Gr_F^2H^2(U, \mathbb{C}) = 7$, and $b_2(U) = 1 + 7 = 8$.



Theorem

Let $C \subset \mathbb{P}^2$ be a curve of degree N, and $U = \mathbb{P}^2 \setminus C$. Suppose that C has only n nodes and t triple points. Set $g_j = g(C_j)$, where the $\{C_j\}_j$ are the irreducible components of C whose number is r. Then one has

$$\dim Gr^1_F H^2(U,\mathbb{C}) = \sum_{j=1}^r g_j$$

and

dim
$$Gr_F^2 H^2(U, \mathbb{C}) = \frac{(N-1)(N-2)}{2} - t.$$

Generalization

Theorem

 $C \subset \mathbb{P}^2$ with isolated singularities, then

$$\dim Gr^1_F H^2(U,\mathbb{C}) = \sum_{j=1}^r g_j$$

Theorem

Let $C \subset \mathbb{P}^2$ be a curve of degree N having only ordinary singular points of multiplicity at most 4. If $U = \mathbb{P}^2 \setminus C$, then one has

dim
$$Gr_F^2 H^2(U, \mathbb{C}) = \frac{(N-1)(N-2)}{2} - t - 3s + b_4^2$$

Generalization

Theorem

 $C \subset \mathbb{P}^2$ with isolated singularities, then

$$\dim Gr^1_F H^2(U,\mathbb{C}) = \sum_{j=1}^r g_j$$

Theorem

Let $C \subset \mathbb{P}^2$ be a curve of degree N having only ordinary singular points of multiplicity at most 4. If $U = \mathbb{P}^2 \setminus C$, then one has

dim
$$Gr_F^2 H^2(U, \mathbb{C}) = \frac{(N-1)(N-2)}{2} - t - 3s + b_4^2$$
.

Thank you for your attention!