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History

Rays, parallels, Busemann functions...

XIX c. Beltrami : Desargues spaces
 the only simply connected are E", S", H"
late XIX c. Hadamard : nonpositively curved surfaces in E3
e unicity of geodesics in a homotopy class

e ends (cusps, funnels)
e rays asymptotic to cusps and funnels

1920’'s Cartan : generalization to higher dimension (Cartan-Hadamard manifolds)
e expp : ToX — X diffeomorphism
e no geodesic loops, no critical points...

1940’s Busemann : Desargues geodesic spaces
o theory of parallels & Busemann functions

~ 1970’'s Gromov : functional compactification of general Riemannian manifolds

Some other applications of the Busemann functions:

Soul Theorem (Cheeger-Gromoll-Meyer), Toponogov’ Splitting Theorem,
Harmonic and (noncompact) Symmetric spaces, dynamics of Kleinian groups...
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Compactifying by adding “directions”

Example. X =E"

OX = {half-lines} /oriented paralielism = "~
X=XUoX =B

Naif idea: X general, complete Riemannian manifold

R(X) = {rays of X} o : Rt — Xis a rayif it is globally minimizing
dX = R(X)/“oriented parallelism” i.e. £(os s, 1) = d(as), a(t)) forall s, t > 0
X =XuUoX

. . oriented parallelism =?
(with some reasonable topology to be defined) (on general Riemannian manifolds)
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Parallelism for rays on a general, complete Riemannian manifold X:

@ « and 3 are metrically asymptotic (i.e. duo(c, 8) < o0)
if sup,~q d(a(t), B(t)) < +o0

@ « tends visually to 3 (i.e. o = [3) =83 coray to a—
if b,,a(tni — 3 for some {tn} — oo, {bn} — B(0)

)Tf/ = a minimizing geodesic segment from x to y

Technical fact: the correct definition of visual convergence
asks for a sequence b, — 3(0) with b,,a(t,,i — B

Otherwise, on a spherical-capped cylinder with pole o,
different meridians would not be visually equivalent rays from o!
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Compactifying by adding “directions”
Parallelism for rays on a general, complete Riemannian manifold X:

@ « and 8 are metrically asymptotic (i.e. duo (v, ) < 00)
if sup,~q d(a(t), B(t)) < +o0

ath)

@ « tends visually to 3 (i.e. o = [3) =83 coray to a—
if b,,a(tni — 3 for some {tn} — oo, {bn} — B(0)
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“Naives” Compactifications

Compactifying by adding “directions”

Parallelism for rays on a general, complete Riemannian manifold X:

@ « and 8 are metrically asymptotic (d- (v, ) < oo)
if sup,>q d(a(t), B(1)) < +o0

@ « and j are visually asymptotic from o (o <o 3)
if 3aray v from o such that a > v and g8 > ~

That is:
a <o [ if one can see (asymptotically) « and g
under a same direction from o

(depends on o, apriori)

Theorem. [Folklore: Busemann, Shihoama et al.]

Two rays a and 3 are visually asymptotic from every point o iff B, = Bg

visually asymptotic
B, = the Busemann function of the ray a
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Compactifying by adding “directions”

Busemann function of a ray on a general, complete Riemannian manifold X:
B.(x,y) = t liT xa(t) — a(t)y
—+o0o

(asymptotic defect of triangles xyp
with third vertex p = a(t), t > 0)

Fact: always converges

Example: X = E”

)Tf/ parallel to o < xy + ya(t) — xa(t) — 0
(as x,y are fixed) < B.(x,y) =d(x,y)
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Busemann function of a ray on a general, complete Riemannian manifold X:
B.(x,y) = t liT xa(t) — a(t)y
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(asymptotic defect of triangles xyp
with third vertex p = a(t), t > 0)

Fact: always converges

Folklore: X = any Riemannian manifold S

B.(x,y) = d(x, y) iff (xy is a ray and) a = Xy.

4

if B, = Bg then o > ~ iff 8 = ~ for every « (and reciprocally)
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Compactifying by adding “directions”
Busemann function of a ray on a general, complete Riemannian manifold X:
B.(x,y) = t liT xa(t) — a(t)y

—+o0o

-
Xy /

(asymptotic defect of triangles xyp
with third vertex p = a(t), t > 0)

Fact: always converges

Folklore: X = any Riemannian manifold X

B.(x,y) = d(x, y) iff (xy is a ray and) a = Xy.

4

if B, = Bg then « > v iff 8 = ~ for every ~, which implies

Theorem. [Folklore: Busemann, Shihoama et al.]

Two rays a and j are visually asymptotic from every point o iff B, = Bg.
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Compactifying by adding “directions”

X = general, complete Riemannian manifold
0X = OmX = R(X)/(doo(a,8)<+00) I-€. Modulo metric asymptoticity

or
OX = 0y X = R(X)/(Ba=Bs) i.e. modulo visual asymptoticity
~ X =XUdX compactifies? what topology?

R(X) has the uniform topology (u.c. on compacts)
which means: oy — «iff afy(0) — a’(0).

Theorem. [Folklore: Eberlein, O’ Neill...]

Let X be a Cartan-Hadamard manifold (= complete, simply connected with k(X) < 0).

(i) doo (0, B) < +00 & Ba = Bg, 50 X(c0) = OmX = 9y X = the visual boundary

(ii) X has a natural “visual” topology such that X — X is a topological embedding
(Xn — & € X(00) iff ZoXn,(n) — 0 Ja €&, Jo€ X)

(iii) X is a compact, metrizable space.

Problem. This nice picture breaks down when 71(X) # (1) or k(X) £ 0.
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“Naives” Compactifications

Compactifying by adding “directions”

Examples: flutes and ladders [Dal’'Bo & Peigné & S.]

There exist hyperbolic manifolds X with rays o, 8 and ap — «
in each of the following situations:

(a)a>,8and6>abut8a7é85

(c ( ,B) = oo but B, = By

~+ X non Hausdorff,
(for any “visual” topology
on OmX or 9y X)

) d.
(d) doo (atn, m) < oo and Ba,, = B, VN, m  but doo(an, @) = oo and By, # Ba
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Compactifying by adding “horofunctions”

X = general, complete Riemannian manifold

““and oxX =X - X

X < C(X) topological embedding X = ix(X)
p— d(x,p) —d(p,-)
N———— —™/— ™
bp(x, -) the horofunction cocycle

bP(va) = _bp(y7 X)
bp(x,y) + bp(y, 2) = bp(X, 2)

bP(X7 ) - bP(XI7 ) = bP(X7 XI)



The Gromov Compactification

Compactifying by adding “horofunctions”

X = general, complete Riemannian manifold

_ ——Co(X) . _
X L Co(X) = Coooyole(X x X) X=bX)>"and 0X=X—-X
p = bp(x,y) = xp — py

—_———

horofunction cocycle

bP(XuV) = 7bp(y7 X)
bp(x,y) + bp(y, 2) = bp(X, 2)

bp(x;-) = bp(x’, ) = bp(x, x")
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Compactifying by adding “horofunctions”

X = general, complete Riemannian manifold

— —___Co(X ) —
X L Ca(X) = Coomyae(X x X) X =b(X)*" and X =X - X

pr=bp(x,y) = X0 — by Gromov ot horofunction compactification of X
horofunction cocycle and Gromov or horofunction boundary of X
[M.Gromov, “Hyperbolic manifolds, groups and actions” (1978)]
a horofunction is a function
§(x,y) = liMp, 00 bp, (X, y) € OX

The Busemann functions are natural horofunctions:
aray ~ Bo(X,y) =1iMto0 bo(X, y) = limis o xat) — at)y € 0X

B: R(X) — 0X the Busemann map
a— B,

0sX = B(R(X)) C 90X the Busemann points of the boundary
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The Busemann map

X = complete Riemannian manifold

X 2 Co(X) = Coooyele(X x X) B:R(X) — dX the Busemann map
P~ bp(X,y) = xp — py ar Ba

X =)™ ax=X-x

Theorem. [Folklore: Gromov...]

Let X be a Cartan-Hadamard n-manifold:
(i) the Busemann map B is continuous; =
(i) B: Ro(X) — 0X is surjective + injective

X(oc0) 20X (= 8" 1)

Problem. The map B for general manifolds is N ‘
- not continuous (ex. hyperbolic flutes) <
- nor surjective: - < T
~ no easy “picture” of the S o T y
Gromov boundary FARY

m@ //

hyperbolic ladders |- He/senberg group
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Theorem. [Dal’'Bo & Peigné & S.]

(i) B : R(X) — 09X is lower semi-continuous on any negatively curved manifold ;
(ii) there exists a hyperbolic flute X and rays an — « such that limp— o Ba, 2 Ba.
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Theorem. [Dal’'Bo & Peigné & S.]

(i) B : R(X) — 09X is lower semi-continuous on any negatively curved manifold ;
(ii) there exists a hyperbolic flute X and rays an — « such that limp— o Ba, 2 Ba.

, _ [(topologically) S? with infinitely many punctures e; — limit puncture e;
RsRB D= {(geometrically) complete hyp. structure with cusps/funnels Ve;

Construction of hyperbolic flutes: [ A

£0,
G=<g1,..., gk,..-> co-generated Schottky group |
g hyperbolic/parabolic isometries of H2

A(g%,8) = {x : d(x,8)>d(x,g%"8)}
the attractive/repulsive domains of g
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(i) B : R(X) — 09X is lower semi-continuous on any negatively curved manifold ;
(ii) there exists a hyperbolic flute X and rays an — « such that limp— o Ba, 2 Ba.

, _ [(topologically) S? with infinitely many punctures e; — limit puncture e;
RsRB D= {(geometrically) complete hyp. structure with cusps/funnels Ve;

Construction of hyperbolic flutes: —

G=<g1,..., gk,..-> co-generated Schottky group N
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If: etheaxesgiNg =0
« {AgF.8)} — ¢ € 0H
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Theorem. [Dal’'Bo & Peigné & S.]

(i) B : R(X) — 09X is lower semi-continuous on any negatively curved manifold ;
(ii) there exists a hyperbolic flute X and rays an — « such that limp— o Ba, 2 Ba.

, _ [(topologically) S? with infinitely many punctures e; — limit puncture e;
RsRB D= {(geometrically) complete hyp. structure with cusps/funnels Ve;

Construction of hyperbolic flutes:

G=<g1,..., gk,..-> co-generated Schottky group
g hyperbolic/parabolic isometries of H2

Schottky : A(g;"', ) NA(g",0) =0 Vi# ]

If: ethe axes giNg; =0 = X = G\H?
e {A(gF,8)} = C€OH  hyperbolic flute

each hyperbolic g; ~~ funnel the ‘‘infinite’” end
each hyperbolic g; ~ cusp

¢ ~ the “infinite” end e
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Theorem. [Dal’'Bo & Peigné & S.]

(i) B : R(X) — 09X is lower semi-continuous on any negatively curved manifold ;
(ii) there exists a hyperbolic flute X and rays an — « such that limp— o Ba, 2 Ba.

, _ [(topologically) S? with infinitely many punctures e; — limit puncture e;
RsRB D= {(geometrically) complete hyp. structure with cusps/funnels Ve;

Construction of hyperbolic flutes:

G=<g1,..., gk,..-> co-generated Schottky group
g hyperbolic/parabolic isometries of H2

Schottky : A(g;"', ) NA(g",0) =0 Vi# ]

~ . . = =
For A(gi, 0) and ¢; as in the picture: &; = 0¢j, & = 0¢ |
~ o = &;/G metrically asymptotic rays on X = G\H?  \

even: doo (0, 05) = 0, 50 B = Ba, \

We have a; — o but: Ba # lim;_, o Ba, = Bag - //
~— T

————— n

Twisted Hyperbolic flute
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Theorem. [Dal’'Bo & Peigné & S.]

There exists a hyperbolic ladder X — >, with group G = Z and rays «, o’ such that:
(i) 9gX consists of 4 points, while 9X has a continuum of points;
(i) doo (a,@') < c0oand o < o < a, but By, # By

Z-covering of a closed hyperbolic surface X4 of genus g > 2
hyperbolic ladder = { obtained by glueing infinitely many copies of X4 — Uig:1 i

with ('y,-) simple, closed non-intersecting fundamental geodesics

\/\ 1 Y2
> { A Y
Ve \/ % ) 3 |2

\Q/ \Qy [ — ¥

&\/ D
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Theorem. [Dal’'Bo & Peigné & S.]

There exists a hyperbolic ladder X — ¥, with group G = Z and rays «, o’ such that:
(i) 9gX consists of 4 points, while 9X has a continuum of points;
(i) doo (a, ') < coand o < o < a, but By, # By

/| e
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Theorem. [Dal’'Bo & Peigné & S.]

There exists a hyperbolic ladder X — ¥, with group G = Z and rays «, o’ such that:
(i) 9gX consists of 4 points, while 9X has a continuum of points;
(i) doo (a, ') < coand o < o < a, but By, # By

o_ X a
s
e
o’ x’ s

4rays o, a—,a’,a’_ metrically and visually non-asymptotic (as By # Ba_, Ba # By/)
— Bo # Bn _ obvious

— B # B, as (by direct computation) Ba (X, X') > 0~ B/ (x,x') = Ba(x',x) = —Ba(x,x’) <0



Flutes
Ladders
Examples Heisenberg group

Theorem. [Dal’'Bo & Peigné & S.]

There exists a hyperbolic ladder X — ¥, with group G = Z and rays «, o’ such that:
(i) 9gX consists of 4 points, while 9X has a continuum of points;
(i) doo (a, ') < coand o < o < a, but By, # By

o_ X a
s
e
o’ x’ s

4rays o, a—,a’,a’_ metrically and visually non-asymptotic (as By # Ba_, Ba # By/)
— the hyperbolic metric ~~ every other ray is metrically strongly asymptotic (d-c = 0)
toone of {o,—,a’, &’ }
—> 09X has 4 points
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a non-Busemann point: ¢ = lim;_, o, g'xo, for xp in the middle
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There exists a hyperbolic ladder X — ¥, with group G = Z and rays «, o’ such that:
(i) 9gX consists of 4 points, while 9X has a continuum of points;
(i) doo (a, ') < coand o < o < a, but By, # By

o_ X a
4 2
1 %o |80 |87 %0 |
g
o’ x’ s

a non-Busemann point: ¢ = lim;_, o, g'xo, for xp in the middle

— actually if bg,-x0 — By, (let’s say)
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Theorem. [Dal’'Bo & Peigné & S.]

There exists a hyperbolic ladder X — ¥, with group G = Z and rays «, o’ such that:
(i) 9gX consists of 4 points, while 9X has a continuum of points;
(i) doo (a, ') < coand o < o < a, but By, # By

o_ X a
4 2
1 %o |80 |87 %0 |
g
o’ x’ s

a non-Busemann point: ¢ = lim;_, o, g'xo, for xp in the middle

— actually if bg,-x0 — Bn (letssay) = b

dixg = b<g,-X0)/ — B, s0 B, = B/, contradiction.
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H = C x R first Heisenberg group (T, 2)-(T,2')=(T+T,z+ 2 +23(22'))
h=Span(X,Y,2), [X,Y]=2 X=2 vy, v=2 2L, z=2

D = Span(X, Y) horizontal distribution
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H = C x R first Heisenberg group (T, 2)-(T,2')=(T+T,z+ 2 +23(22'))
h=Span(X,Y,2), [X,Y]=2 X=2 vy 2, v=2 -2

- ox

D = Span(X, Y) horizontal distribution

Carnot-Carathéodory structure : L-invariant <, > on D

~ dec(P, Q) = inf,, ¢(+) over horizontal curves ~ joining P, Q

compatible Riemannian structure : L-invariant gon b s.t. glp =<, >
~ dg(P, Q) = inf, £(y) over all curves ~ joining P, Q
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H = C x R first Heisenberg group (T, 2)-(T,2')=(T+T,z+ 2 +23(22'))
h=Span(X,Y,2), [X,Y]=2 X=2 vy, v=2 2L, z=2

D = Span(X, Y) horizontal distribution

Carnot-Carathéodory structure : L-invariant <, > on D

~ dec(P, Q) = inf,, ¢(+) over horizontal curves ~ joining P, Q

compatible Riemannian structure : L-invariantgon b s.t. g|p =<, >
~ dg(P, Q) = inf, £(y) over all curves ~ joining P, Q

Remark: there are no rays in (H, dg) beyond plane geodesics.

Riemannian geodesics are:
- (minimizing) straight lines in planes parallel to C;
- perturbed, ascending circular helices; Y,
- straight vertical lines.
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H = C x R first Heisenberg group (@, 2) - (T,2') = (G+ a’ z+ 7 +29(22))
h=Span(X,Y,2), [X,Y]=2 X=2 vy 2, v=
D = Span(X, Y) horizontal distribution
Carnot-Carathéodory structure : L-invariant <, > on D
~ dec(P, Q) = inf,, ¢(+) over horizontal curves ~ joining P, Q ! ANy
compatible Riemannian structure : L-invariantgon b s.t. g|p =<, > Lo i\i
i = X
~ dg(P, Q) = inf, £(y) over all curves ~ joining P, Q ;( .
Remark: there are no rays in (H, dg) beyond plane geodesics. i// y - E \1
Riemannian geodesics are: I ~ |
- (minimizing) straight lines in planes parallel to C; \ ’
- perturbed, ascending circular helices; Y, S 1////, -7
- straight vertical lines. /

Theorem. [Klein &Nikas (C.C. case) - Le Donne&Nicolussi&S. (Riemannian case) ]

(i) The Gromov Boundary of the Heisenberg group endowed with any C.C. or left
invariant Riemannian metric is homeomorphic to a 2-dimensional closed disk D?;

(ii) if dg and dg¢ are compatible, then they are strongly asymptotically isometric:
dr(P, Q) — dgc(P, Q) — 0 for d(P, Q) — oo




Flutes
Ladders
Examples Heisenberg group

Ways of diverging in the Heisenberg group

4 ways of going to infinity for a sequence of points P, = (Un, z) € H=C x R:
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Ways of diverging in the Heisenberg group

4 ways of going to infinity for a sequence of points P, = (Un, z) € H=C x R:
vertical, sup-quadratic, quadratic and sub-quadratic (or horizontal) divergence

N

vertical: lu,l <M

luyl — o

o sup—quadratic:
LA 2l ol —= o0

? ..-. quadratic: 7, /lu, F— ¢

(uz)

hor
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Ways of diverging in the Heisenberg group

4 ways of going to infinity for a sequence of points P, = (Un, z) € H=C x R:
vertical, sup-quadratic, quadratic and sub-quadratic (or horizontal) divergence

Z 4 vertical: lu,| <M )
h(P)=<-uP""> @O h(p) = jul ~ u-P"|

(u=limw, Mo, 1) (u=limu,)

[ugl — o

o sup—quadratic:
» 0p=q lzallunl>— o0

[} . 2
L quadratic: z, /lu, '— ¢
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Ways of diverging in the Heisenberg group

4 ways of going to infinity for a sequence of points P, = (Un, z) € H=C x R:
vertical, sup-quadratic, quadratic and sub-quadratic (or horizontal) divergence

~N

vertical: lu,l <M - -
h(P)=<-u P> T hp) = ful - u-P"|

fu! © (u=lim w oy 1) (u=Tlimu,)

(zn I/l pl>—> o0

o sup-quadratic:

[} . 2
L quadratic: z, /lu, '— ¢

Facts: a) (correct gluing) if |un| — oo, then < —U, P >= limp—s o0 |Un| — |Up — P| for U = limy Un/|un|
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Examples
h(P) = lul = lu—P""|

arctan(c)
(u=limu,)

4 ways of going to infinity for a sequence of points P, = (Un, z) € H=C x R:

Ways of diverging in the Heisenberg group
h(P) = <—u,P"">
(u=limu, /ln, 1)

h(P) = <RguP"">

vertical, sup-quadratic, quadratic and sub-quadratic (or horizontal) divergence

vertical: lu, |l <M

s ugl — oo
sup—quadratic: =~ "
p P Izal/l o2 —= o0
. 2 (u=1 o /lug )
? quadratic: z, /lu, F— ¢ e
y

N

it § Un 7
zp/|Unl? - ¢

i
A
wz) fof
hor
u
Facts: a) (correct gluing) if |up| — oo , then < —U, P>= limp_ oo |Un| — |Un — P| for & = limp Un/|un|
] u iy —u , R i
-, hen h = A’ iff R = R,
and{z;/‘umz S then iff R oy U o(cH U

b) (identification)
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e dim(X) > 2 ~- stronger than ¢ (X) f.g.




General results
Example in dimension n = 3

Geometrically finite manifolds

Geometrically finite manifolds

= a large class of (negatively curved) manifolds with finitely generated 71 (X)
e dim(X) =2 ~ same as 71(X) f.g. funnels
e dim(X) > 2 ~- stronger than ¢ (X) f.g.
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X is geometrically finite if some (any)
e-neighbourhood of CX has finite volume




General results
Example in dimension n = 3

Geometrically finite manifolds

Geometrically finite manifolds

= a large class of (negatively curved) manifolds with finitely generated 71 (X)
e dim(X) =2 ~-same as m1(X) f.g. funnels
e dim(X) > 2 ~- stronger than ¢ (X) f.g.

X = G\H H = Cartan-Hadamard, —b? < k(H) < —a® < 0
LG the limit set of G, CG C H its convex hull
CX = G\CG C X the Nielsen core of X

X is geometrically finite if some (any)
e-neighbourhood of CX has finite volume

Theorem. [Dal'Bo & Peigné & S.]

Let X=G\H be a geometrically finite manifold, and «, § rays of X:

(i) doo(a, ) <0 & a>f < By =Bg

(i) B : R(X) — 90X is continuous and surjective
@ if dim(X) =2 ~» X is a compact surface with boundary

@ if dim(X) >2 ~ X is a compact manifold with boundary
with a finite number of conical singularities
(one for each conjugate class of maximal parabolic subgroups of G)

= X(00) = R(X)/equiv. = OX




General results
Example in dimension n = 3

Geometrically finite manifolds

Geometrically finite manifolds
= a large class of (negatively curved) manifolds with finitely generated 71 (X)
e dim(X) =2 ~-same as m1(X) f.g. funnels

e dim(X) > 2 ~- stronger than ¢ (X) f.g.

X = G\H H = Cartan-Hadamard, —b? < k(H) < —a® < 0
LG the limit set of G, CG C H its convex hull
CX = G\CG C X the Nielsen core of X
X is geometrically finite if some (any)
e-neighbourhood of CX has finite volume

Theorem. [Dal'Bo & Peigné & S.]

Let X = G\H be a geometrically finite manifold, and «, 3 rays of X:

(i) doo(0, ) <00 & a>fB < Ba=B;s

(i) B : R(X) — 90X is continuous and surjective
@ ifdim(X) =2 ~ X is a compact surface with boundary

@ if dim(X) >2 ~» X is acompact manifold with boundary
with a finite number of conical singularities
(one for each conjugate class of maximal parabolic subgroups of G)

j X(OO) = R(X)/equfv. = 0X

& € Xis a conical singularity if it has a neighbourhood homeomorphic to the cone over some topological manifold)
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The simplest (non-compact, non simply-connected) geometrically finite 3-manifold

P =< p> infinite cyclic parabolic group of H®, X = G\H?
LP = {¢&} the limit set Ord(P) = H® — ¢ the discontinuity domain
D(P,3) = {x € H®: d(x,d) < d(x,p"0),Yn € Z} the Dirichlet domain
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Geometrically finite manifolds

The simplest (non-compact, non simply-connected) geometrically finite 3-manifold

P =< p> infinite cyclic parabolic group of H®, X = G\H?

LP = {¢&} the limit set Ord(P) = H® — ¢ the discontinuity domain

D(P,0) = {x e H®: d(x,0) < d(x,p"0),Vn € Z} the Dirichlet domain
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General results
Example in dimension n = 3

Geometrically finite manifolds

The simplest (non-compact, non simply-connected) geometrically finite 3-manifold

P =< p> infinite cyclic parabolic group of H®, X = G\H?
LP = {¢&} the limit set Ord(P) = H® — ¢ the discontinuity domain
D(P,0) = {x e H®: d(x,0) < d(x,p"0),Vn € Z} the Dirichlet domain

@ see X = P\D(P,3) = P\[H; x (0,400)] = Cil x (0,+o0)

@ add the ordinary Dirichlet points: X' = X U [8D(P, 8) N Ord(P)] 22 Cil x [0, 4+c0)

- ) Cil x{e}

e L~ He/<p>
D(PJ) He
OD(P5)-&

OD(P3)NOrd(P) X'= solid infinite cylindrical shell



General results
Example in dimension n = 3

Geometrically finite manifolds

The simplest (non-compact, non simply-connected) geometrically finite 3-manifold

P =< p> infinite cyclic parabolic group of H®, X = G\H?
LP = {¢&} the limit set Ord(P) = H® — ¢ the discontinuity domain
D(P,0) = {x e H®: d(x,0) < d(x,p"0),Vn € Z} the Dirichlet domain
@ see X = P\D(P,3) = P\[H; x (0,400)] = Cil x (0,+o0)
@ add the ordinary Dirichlet points: X' = X U [8D(P, 8) N Ord(P)] 22 Cil x [0, 4+c0)
e adding one point corresponding to £ <> P [with the topology: x, — & for any diverging (xn)]:
X = X" U {€} = Cil x [0,+09]/[g+ g~ —(x,+00)]

J-Cil x{e} X
// :\\ ) N\
HE/ <p> // -

g D(PS) H ‘ _
; ODPB)-E | ‘e=B=B

OD(PB)NOrd(P) X'= solid infinite cylindrical shell X = solid spindle torus
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