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“Näives” Compactifications

The Gromov Compactification
Examples

Geometrically finite manifolds

Rays, parallels, Busemann functions...

XIX c. Beltrami : Desargues spaces
• the only simply connected are En, Sn,Hn

late XIX c. Hadamard : nonpositively curved surfaces in E3

• unicity of geodesics in a homotopy class
• ends (cusps, funnels)
• rays asymptotic to cusps and funnels

1920’s Cartan : generalization to higher dimension (Cartan-Hadamard manifolds)
• expo : ToX → X diffeomorphism
• no geodesic loops, no critical points...

1940’s Busemann : Desargues geodesic spaces
• theory of parallels & Busemann functions

 1970’s Gromov : functional compactification of general Riemannian manifolds

Some other applications of the Busemann functions:
Soul Theorem (Cheeger-Gromoll-Meyer), Toponogov’ Splitting Theorem,
Harmonic and (noncompact) Symmetric spaces, dynamics of Kleinian groups...
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Compactifying by adding “directions”

Example. X = En

∂X = {half-lines}/oriented parallelism ∼= Sn−1

X = X ∪ ∂X ∼= Bn−1

Näif idea: X general, complete Riemannian manifold

R(X ) = {rays of X}
∂X = R(X )/“oriented parallelism”

X = X ∪ ∂X
(with some reasonable topology to be defined)

α : R+ → X is a ray if it is globally minimizing
i.e. `(α; s, t) = d(α(s), α(t)) for all s, t ≥ 0

oriented parallelism =?
(on general Riemannian manifolds)
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bnα(tn)→ β for some {tn} → ∞, {bn} → β(0)

−→xy = a minimizing geodesic segment from x to y

Technical fact: the correct definition of visual convergence
asks for a sequence bn → β(0) with

−−−−→
bnα(tn)→ β

Otherwise, on a spherical-capped cylinder with pole o,
different meridians would not be visually equivalent rays from o!
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“Näives” Compactifications

The Gromov Compactification
Examples

Geometrically finite manifolds

Compactifying by adding “directions”

Parallelism for rays on a general, complete Riemannian manifold X :

α and β are metrically asymptotic (d∞(α, β) <∞)
if supt≥0 d(α(t), β(t)) < +∞

α and β are visually asymptotic from o (α ≺o� β )
if ∃ a ray γ from o such that α � γ and β � γ

That is:
α ≺o� β if one can see (asymptotically) α and β
under a same direction from o

(depends on o, apriori)

Theorem. [Folklore: Busemann, Shihoama et al.]

Two rays α and β are visually asymptotic from every point o︸ ︷︷ ︸ iff Bα = Bβ

“visually asymptotic”

Bα = the Busemann function of the ray α
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“Näives” Compactifications

The Gromov Compactification
Examples

Geometrically finite manifolds

Compactifying by adding “directions”

Busemann function of a ray on a general, complete Riemannian manifold X :
Bα(x , y) = lim

t→+∞
xα(t)− α(t)y

(asymptotic defect of triangles xyp
with third vertex p = α(t), t � 0)

Fact: always converges

Example: X = En

−→xy parallel to α ⇔ xy + yα(t)− xα(t)→ 0
(as x , y are fixed) ⇔ Bα(x , y) = d(x , y)
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Busemann function of a ray on a general, complete Riemannian manifold X :
Bα(x , y) = lim

t→+∞
xα(t)− α(t)y

(asymptotic defect of triangles xyp
with third vertex p = α(t), t � 0)

Fact: always converges

Folklore: X = any Riemannian manifold

Bα(x , y) = d(x , y) iff (−→xy is a ray and) α � −→xy .

⇓
if Bα = Bβ then α � γ iff β � γ for every γ, which implies

Theorem. [Folklore: Busemann, Shihoama et al.]

Two rays α and β are visually asymptotic from every point o iff Bα = Bβ .
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= ∂v X = R(X )/(Bα=Bβ ) i.e. modulo visual asymptoticity

 X = X ∪ ∂X compactifies? what topology?
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X = general, complete Riemannian manifold
∂X .

= ∂mX = R(X )/(d∞(α,β)<+∞) i.e. modulo metric asymptoticity
or

∂X .
= ∂v X = R(X )/(Bα=Bβ ) i.e. modulo visual asymptoticity

 X = X ∪ ∂X compactifies? what topology?
R(X) has the uniform topology (u.c. on compacts)
which means: αn → α iff α′n(0)→ α′(0).

Theorem. [Folklore: Eberlein, O’ Neill...]

Let X be a Cartan-Hadamard manifold (= complete, simply connected with k(X) ≤ 0).

(i) d∞(α, β) < +∞ ⇔ Bα = Bβ , so X(∞)
.

= ∂mX = ∂v X = the visual boundary

(ii) X has a natural “visual” topology such that X ↪→ X is a topological embedding
(xn→ξ∈X(∞) iff ∠oxn,α(n)→ 0 ∃α∈ξ, ∃o∈X )

(iii) X is a compact, metrizable space.
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X = general, complete Riemannian manifold
∂X .

= ∂mX = R(X )/(d∞(α,β)<+∞) i.e. modulo metric asymptoticity
or

∂X .
= ∂v X = R(X )/(Bα=Bβ ) i.e. modulo visual asymptoticity

 X = X ∪ ∂X compactifies? what topology?
R(X) has the uniform topology (u.c. on compacts)
which means: αn → α iff α′n(0)→ α′(0).

Theorem. [Folklore: Eberlein, O’ Neill...]

Let X be a Cartan-Hadamard manifold (= complete, simply connected with k(X) ≤ 0).

(i) d∞(α, β) < +∞ ⇔ Bα = Bβ , so X(∞)
.

= ∂mX = ∂v X = the visual boundary

(ii) X has a natural “visual” topology such that X ↪→ X is a topological embedding
(xn→ξ∈X(∞) iff ∠oxn,α(n)→ 0 ∃α∈ξ, ∃o∈X )

(iii) X is a compact, metrizable space.

Problem. This nice picture breaks down when π1(X ) 6= (1) or k(X ) 6≤ 0.
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Examples: flutes and ladders [Dal’Bo & Peigné & S.]

There exist hyperbolic manifolds X with rays α, β and αn → α
in each of the following situations:

(a) α � β and β � α but Bα 6= Bβ

(b) d∞(α, β) <∞ but Bα 6= Bβ

(c) d∞(α, β) =∞ but Bα = Bβ

(d) d∞(αn, αm) <∞ and Bαn = Bαm∀n,m but d∞(αn, α) =∞ and Bαn 6= Bα
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There exist hyperbolic manifolds X with rays α, β and αn → α
in each of the following situations:

(a) α � β and β � α but Bα 6= Bβ

(b) d∞(α, β) <∞ but Bα 6= Bβ

(c) d∞(α, β) =∞ but Bα = Bβ

(d) d∞(αn, αm) <∞ and Bαn = Bαm∀n,m but d∞(αn, α) =∞ and Bαn 6= Bα

 X non Hausdorff,
(for any “visual” topology

on ∂mX or ∂v X )



History
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“Näives” Compactifications

The Gromov Compactification
Examples

Geometrically finite manifolds

Compactifying by adding “horofunctions”

X = general, complete Riemannian manifold
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ix
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Compactifying by adding “horofunctions”

X = general, complete Riemannian manifold

X
ix
↪→ C(X ) topological embedding

p 7→ d(x , p)− d(p, ·)︸ ︷︷ ︸
bp(x , ·) the horofunction cocycle

bp(x , y) = −bp(y , x)
bp(x , y) + bp(y , z) = bp(x , z)

bp(x , ·)− bp(x ′, ·) = bp(x , x ′)

X = ix(X )
C(X)

and ∂X = X − X
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The Busemann map

X = complete Riemannian manifold

X
b
↪→ C2(X ) = Ccocycle(X×X )

p 7→ bp(x , y) = xp − py

X = b(X )
C2(X)

∂X = X − X

B : R(X )→ ∂X the Busemann map
α 7→ Bα

Theorem. [Folklore: Gromov...]

Let X be a Cartan-Hadamard n-manifold:
(i) the Busemann map B is continuous;
(ii) B : Ro(X)→ ∂X is surjective + injective

⇒ X(∞) ∼= ∂X (∼= Sn−1)

Problem. The map B for general manifolds is
- not continuous (ex. hyperbolic flutes)
- nor surjective:
 no easy “picture” of the
Gromov boundary

hyperbolic ladders - Heisenberg group
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hyperbolic flute
each hyperbolic gi  funnel
each hyperbolic gi  cusp

ζ  the “infinite” end e
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Theorem. [Dal’Bo & Peigné & S.]

(i) B : R(X)→ ∂X is lower semi-continuous on any negatively curved manifold ;
(ii) there exists a hyperbolic flute X and rays αn → α such that limn→∞ Bαn 	 Bα.

hyperbolic flute =
{
(topologically) S2 with infinitely many punctures ei → limit puncture e;
(geometrically) complete hyp. structure with cusps/funnels ∀ei

Construction of hyperbolic flutes:
G =<g1,..., gk ,...>∞-generated Schottky group

gi hyperbolic/parabolic isometries of H2

Schottky : A(g±1
i , õ)∩A(g±1

j , õ) = ∅ ∀i 6= j

For A(gi , õ) and ζi as in the picture: α̃i =
−→̃
oζi , α̃ =

−→̃
oζ

 αi = α̃i/G metrically asymptotic rays on X = G\H2

even: d∞(αi , αj ) = 0, so Bαi = Bαj

We have αi → α but: Bα 6= limi→∞ Bαi = Bα0

Twisted Hyperbolic flute
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(ii) d∞(α, α′) <∞ and α ≺ α′ ≺ α, but Bα 6= Bα′ .
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(i) ∂BX consists of 4 points, while ∂X has a continuum of points;
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hyperbolic ladder =


Z-covering of a closed hyperbolic surface Σg of genus g ≥ 2
obtained by glueing infinitely many copies of Σg −

⋃g
i=1 γi

with (γi ) simple, closed non-intersecting fundamental geodesics
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“Näives” Compactifications

The Gromov Compactification
Examples

Geometrically finite manifolds

Flutes
Ladders
Heisenberg group

Theorem. [Dal’Bo & Peigné & S.]

There exists a hyperbolic ladder X → Σ2 with group G ∼= Z and rays α, α′ such that:
(i) ∂BX consists of 4 points, while ∂X has a continuum of points;
(ii) d∞(α, α′) <∞ and α ≺ α′ ≺ α, but Bα 6= Bα′ .

4 rays α, α−, α′, α′− metrically and visually non-asymptotic (as Bα 6= Bα− , Bα 6= Bα′ )
– Bα 6= Bα− obvious

– Bα 6= Bα′ as (by direct computation) Bα(x, x′) > 0  Bα′ (x, x′) ′= Bα(x′, x) = −Bα(x, x′) < 0
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Theorem. [Dal’Bo & Peigné & S.]

There exists a hyperbolic ladder X → Σ2 with group G ∼= Z and rays α, α′ such that:
(i) ∂BX consists of 4 points, while ∂X has a continuum of points;
(ii) d∞(α, α′) <∞ and α ≺ α′ ≺ α, but Bα 6= Bα′ .

4 rays α, α−, α′, α′− metrically and visually non-asymptotic (as Bα 6= Bα− , Bα 6= Bα′ )
– the hyperbolic metric every other ray is metrically strongly asymptotic (d∞ = 0)

to one of {α, α−, α′, α′−}⇒ ∂BX has 4 points
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Theorem. [Dal’Bo & Peigné & S.]

There exists a hyperbolic ladder X → Σ2 with group G ∼= Z and rays α, α′ such that:
(i) ∂BX consists of 4 points, while ∂X has a continuum of points;
(ii) d∞(α, α′) <∞ and α ≺ α′ ≺ α, but Bα 6= Bα′ .

a non-Busemann point: ξ = limi→∞ g i x0, for x0 in the middle

– actually if bgi x0
→ Bα (let’s say) ⇒ bgi x0

= b
(gi x0)′ → Bα′ so Bα = Bα′ , contradiction.
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(~u, z) · (~u′, z′) = (~u +~u′, z + z′ + 2=(zz̄′))

X = ∂
∂x + 2y ∂

∂z , Y = ∂
∂x − 2x ∂

∂z , Z = ∂
∂z

Carnot-Carathéodory structure : L-invariant <,> on D
 dCC(P,Q) = infγ `(γ) over horizontal curves γ joining P, Q

compatible Riemannian structure : L-invariant g on h s.t. g|D =<,>

 dR(P,Q) = infγ `(γ) over all curves γ joining P, Q

Remark: there are no rays in (H, dR ) beyond plane geodesics.
Riemannian geodesics are:

- (minimizing) straight lines in planes parallel to C;
- perturbed, ascending circular helices;
- straight vertical lines.
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Theorem. [Klein &Nikas (C.C. case) - Le Donne&Nicolussi&S. (Riemannian case) ]

(i) The Gromov Boundary of the Heisenberg group endowed with any C.C. or left
invariant Riemannian metric is homeomorphic to a 2-dimensional closed disk D̄2;
(ii) if dR and dCC are compatible, then they are strongly asymptotically isometric:

dR(P,Q)− dCC(P,Q)→ 0 for d(P,Q)→∞
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Ways of diverging in the Heisenberg group

4 ways of going to infinity for a sequence of points Pn = (~un, zn) ∈ H = C×R:
vertical, sup-quadratic, quadratic and sub-quadratic (or horizontal) divergence
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Facts: a) (correct gluing) if |un| → ∞ , then <−~u, P>= limn→∞|~un| − |~un − P| for~u = limn ~un/|un|
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′



History
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Geometrically finite manifolds

= a large class of (negatively curved) manifolds with finitely generated π1(X )

• dim(X) = 2  same as π1(X) f.g.
• dim(X) > 2  stronger than π1(X) f.g.
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Geometrically finite manifolds

= a large class of (negatively curved) manifolds with finitely generated π1(X )

• dim(X) = 2  same as π1(X) f.g.
• dim(X) > 2  stronger than π1(X) f.g.

X = G\H H = Cartan-Hadamard,−b2≤k(H)≤−a2< 0

LG the limit set of G, CG ⊂ H its convex hull

CX = G\CG ⊂ X the Nielsen core of X
(the smallest closed and convex subset of X containing all the
geodesics which meet infinitely many often a compact set)

X is geometrically finite if some (any)
ε-neighbourhood of CX has finite volume



History
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Geometrically finite manifolds

= a large class of (negatively curved) manifolds with finitely generated π1(X )

• dim(X) = 2  same as π1(X) f.g.
• dim(X) > 2  stronger than π1(X) f.g.

X = G\H H = Cartan-Hadamard,−b2≤k(H)≤−a2< 0

LG the limit set of G, CG ⊂ H its convex hull

CX = G\CG ⊂ X the Nielsen core of X

X is geometrically finite if some (any)
ε-neighbourhood of CX has finite volume

Theorem. [Dal’Bo & Peigné & S.]

Let X =G\H be a geometrically finite manifold, and α, β rays of X :
(i) d∞(α, β) <∞ ⇔ α � β ⇔ Bα = Bβ
(ii) B : R(X)→ ∂X is continuous and surjective ⇒ X(∞) ∼= R(X)/equiv. ∼= ∂X

if dim(X) = 2  X is a compact surface with boundary
if dim(X) > 2  X is a compact manifold with boundary

with a finite number of conical singularities
(one for each conjugate class of maximal parabolic subgroups of G)
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= a large class of (negatively curved) manifolds with finitely generated π1(X )

• dim(X) = 2  same as π1(X) f.g.
• dim(X) > 2  stronger than π1(X) f.g.

X = G\H H = Cartan-Hadamard,−b2≤k(H)≤−a2< 0

LG the limit set of G, CG ⊂ H its convex hull

CX = G\CG ⊂ X the Nielsen core of X

X is geometrically finite if some (any)
ε-neighbourhood of CX has finite volume

Theorem. [Dal’Bo & Peigné & S.]

Let X =G\H be a geometrically finite manifold, and α, β rays of X :
(i) d∞(α, β) <∞ ⇔ α � β ⇔ Bα = Bβ
(ii) B : R(X)→ ∂X is continuous and surjective ⇒ X(∞) ∼= R(X)/equiv. ∼= ∂X

if dim(X) = 2  X is a compact surface with boundary
if dim(X) > 2  X is a compact manifold with boundary

with a finite number of conical singularities
(one for each conjugate class of maximal parabolic subgroups of G)

ξ ∈ X is a conical singularity if it has a neighbourhood homeomorphic to the cone over some topological manifold)
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The simplest (non-compact, non simply-connected) geometrically finite 3-manifold

P=<p> infinite cyclic parabolic group of H3, X = G\H2

LP = {ξ} the limit set Ord(P) = ∂H3 − ξ the discontinuity domain
D(P, õ) = {x ∈ H3 : d(x , õ) ≤ d(x , pnõ), ∀n ∈ Z} the Dirichlet domain

1 see X = P\D(P, õ) = P\[Hξ × (0,+∞)] ∼= Cil × (0,+∞)

2 add the ordinary Dirichlet points: X ′ = X ∪ [∂D(P, õ)∩Ord(P)] ∼= Cil × [0,+∞)

3 adding one point corresponding to ξ ↔ P [with the topology: xn → ξ for any diverging (xn)]:
X = X ′ ∪ {ξ} ∼= Cil × [0,+∞]/[B+=B−=(x,+∞)]
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