
The effect of geometry on the eigenvalues of the
Laplacian

Ahmad El Soufi
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Part I : Euclidean domains

Let Ω ⊂ Rn be a bounded domain and consider the eigenvalue
problem {

∆u + λu = 0 in Ω
u = 0 on ∂Ω.

with

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n
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The corresponding spectrum is discrete

0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ · · · → ∞

∀u ∈ C∞0 (Ω) ∫
Ω

u∆u =

∫
Ω
|∇u|2

λ1(Ω) = inf
u∈C∞0 (Ω)

∫
Ω |∇u|2∫

Ω u2

and

λk(Ω) = inf
E∈Sk

sup
u∈E

∫
Ω |∇u|2∫

Ω u2

where Sk is the set of all k-dimensional vector subspaces of
C∞0 (Ω).
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Drum :

The equation that governs the vibrations of the membrane of a
drum is the wave equation{

∂2

∂t2 f −∆x f = 0 in Ω
f = 0 on ∂Ω.

where f (x , t) represents the height at time t above the point x .



Separation of variables :

f (x , t) = ω(t)u(x)

satisfies the wave equation iff there exists λ > 0 such that
∂2

∂t2ω + λω = 0
∆u + λu = 0 in Ω
u = 0 on ∂Ω.

Thus
ω(t) = A cos(

√
λt) + B sin(

√
λt)

and {
∆u + λu = 0 in Ω
u = 0 on ∂Ω.

which means that 1
2π

√
λ is the frequency of the vibration.



Diffusion of heat :


∂
∂t f (x , t)−∆x f (x , t) = 0 in Ω
f (x , 0) = g(x) in Ω
f (x , t) = 0 on ∂Ω.

where f (x , t) represents the temperature at the point x ∈ Ω̄ and
time t. The initial data g(x) is assumed to be zero on ∂Ω.

Applying the separation of variables we show that

f (x , t) =
∞∑
n=1

ake−λk tuk(x)

where {uk} is an L2-orthonormal basis of eigenfunctions with
∆uk = λkuk and ak =

∫
Ω g(x)uk(x)dx .

f (x , t) = e−λ1t
(

a1u1(x) + 0(eλ2−λ1)t)
)

as t →∞
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Examples:

The rectangle Ra,b = (0, a)× (0, b) :

Spec(Ra,b) =

{
λn,m = π2

(
n2

a2
+

m2

b2

)
: n ≥ 1, m ≥ 1

}
with corresponding eigenfunctions

un,m(x , y) = sin(
nπ

a
x) sin(

mπ

b
y)

In particular, the least eigenvalue is given by

λ1(Ra,b) = π2

(
1

a2
+

1

b2

)



The unit disk D1 = {x2 + y 2 < 1}
Using polar coordinates (r , θ), we may write

u(r , θ) = v0(r) +
∑
n≥1

(vn(r) cos(nθ) + v−n(r) sin(nθ))

r 2v ′′n + r v ′n + (r 2λ− n2)vn = 0

with vn(1) = 0. Setting vn(r) = y(
√
λr) we get, with s =

√
λr ,

s2y ′′ + sy ′ + (s2 − n2)y = 0

(Bessel equation) with y(
√
λ) = 0.

Thus, vn(r) = Jn(
√
λr), where Jn is a Bessel function of the first

kind. The eigenvalues of D1 are the squares of the zeroes of Jn.
In particular,

λ1(D1) = j2
0,1 ≈ (2.4048)2

where j0,1 is the first positive zero of the Bessel function J0.
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Eigenvalues and Volume

Let Ω ⊂ Rn be a bounded domain.
One has

λk(c Ω) =
1

c2
λk(Ω) and |c Ω| = cn|Ω|

where |Ω| stands for the volume of Ω.

Weyl’s asymptotic formula (1911) :

λk(Ω) ≈ Cn|Ω|−
2
n k

2
n , as k →∞

where Cn = 4π2ω
− 2

n
n with ωn = volume of the unit ball Bn.

In dimension 2

λk(Ω) ≈ 4π
k

|Ω|
, as k →∞
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Conjecture of Pólya (1961): ∀k ≥ 1

λk(Ω) ≥ Cn|Ω|−
2
n k

2
n

Li-Yau (1983): ∀k ≥ 1

λk(Ω) ≥ n

n + 2
Cn|Ω|−

2
n k

2
n
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Minimal eigenvalues

Define, ∀k ≥ 1,

λ∗k = inf
Ω⊂Rn ; |Ω|=1

λk(Ω) = inf
Ω⊂Rn

λk(Ω)|Ω|
2
n .

Remark 1 : λ∗k does not change if we add a connectedness
constraint in the definition.

Remark 2 : sup
Ω⊂Rn ; |Ω|=1

λ1(Ω) = +∞

For example, for the rectangle Ra,b one has

λ1(Ra,b) = π2

(
1

a2
+

1

b2

)
→∞

as a→ 0 and b = 1
a .
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Faber-Krahn (1924): λ∗1 = λ1(Bn)ω
2
n
n = j2

n
2
−1,1ω

2
n
n ,

i.e. the infimum of λ1 is uniquely achieved by a ball of unit volume.

In dimension 2 : λ∗1 = π j2
0,1 ≈ 18.168

Recall that Heat(x , t) ≈ c(x)e−λ1(Ω)t
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Krahn-Szegö : λ∗2 = 2
2
nλ∗1

The infimum of λ2 is achieved by the disjoint union of two balls of
the same radius.



Dimension 2 :
Conjecture : λ∗3 = πλ3(disk) = π j2

1,1 ≈ 46.125

Conjecture : λ∗4 is achieved by the union of two disks whose radii

are in the ratio
j0,1
j1,1
≈ 1.59 and λ∗4 = λ∗1 + λ∗3 ≈ 64.293
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Szegö problem : Does λ∗k achieved by a disk or a union of disks for
all k ≥ 1 ?

Wolf-Keller (1994) : λ∗13 is not achieved by a disk or a union of
disks

Amandine Berger (2015) : ∀k ≥ 5, λ∗k is not achieved by a disk or
a union of disks
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Edouard Oudet (2004)





Colbois-E. (Math. Z. 2014) : The sequence λ∗k
n/2 is subadditive,

i.e., ∀ i1, i2, · · · , ip ∈ N∗ with i1 + i2 + · · ·+ ip = k ,

λ∗k
n/2 ≤ λ∗i1

n/2 + λ∗i2
n/2 + · · ·+ λ∗ip

n/2.

The equality holds iff there exists a minimizing sequence ΩN for λk
such that each ΩN is a disjoint union of p domains AN

1 , · · · ,AN
p

with, for each k ≤ p, AN
k is, up to volume normalization, a

minimizing sequence of domains for λik .
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Corollary:

λ∗k+1

n
2 − λ∗k

n
2 ≤ λ∗1

n
2 = jnn

2
−1,1ωn

In particular, in dimension 2

λ∗k+1 − λ∗k ≤ π j2
0,1 ≈ 18.168

Consequence : some of the numerical computations made by
Oudet are not accurate. For example, he obtained λ∗6 ≈ 88.96 and
λ∗7 ≈ 107.47, but 107.47− 88.96 exceeds 18.168.

Improvements of Oudet’s calculations have been obtained recently
by Antunes and Freitas using our theorem.

Iterating the inequality of the Corollary we get

λ∗k ≤ πj2
0,1k

which, together with Polya’s conjecture gives

4πk ≤ λ∗k ≤ 5.784 πk
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Fekete’s Subadditive Lemma leads to :

Corollary : The sequence
λ∗k (n)

k2/n converges to a positive limit with

lim
k

λ∗k(n)

k2/n
= inf

k

λ∗k(n)

k2/n
.

Thus,

Pólya’s conjecture ⇔ lim
k

λ∗k(n)

k2/n
= 4π2ω

−2/n
n
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Universal properties

Question : Does any finite sequence 0 < λ1 < λ2 ≤ · · · ≤ λp of
numbers can be realized as the beginning of the Dirichlet spectrum
of a bounded domain ?

Payne-Pólya-Weinberger (1954): ∀Ω ⊂ Rn and ∀k ≥ 1,

λk+1(Ω)− λk(Ω) ≤ 4

n

1

k

k∑
i=1

λi (Ω).

In particular,
λk+1(Ω)

λk(Ω)
≤ 1 +

4

n

Ashbaugh-Benguria (1992):

λ2(Ω)

λ1(Ω)
≤ λ2(Bn)

λ1(Bn)
.
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Yang (1991): ∀Ω ⊂ Rn and ∀k ≥ 1,

k∑
i=1

(λk+1(Ω)− λi (Ω))2 ≤ 4

n

k∑
i=1

λi (Ω) (λk(Ω)− λi (Ω)) .

Cheng-Yang (2007):
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λ1(Ω)
≤
(
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4

n

)
k

2
n .
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Part II : Compact Hypersurfaces

Given a compact hypersurface M ⊂ Rn+1, we associate the
quadratic form

u 7→
∫
M
|∇Mu|2dσ

where ∇Mu is the tangential part of the gradient.
The corresponding symmetric operator ∆M is the Laplace-Beltrami
operator on M, i.e.∫

M
u∆Mu dσ :=

∫
M
|∇Mu|2dσ.

The spectrum of ∆M is discrete

0 = λ0(M) < λ1(M) ≤ λ2(M) ≤ . . . λk(M) ≤ · · · → ∞
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Weyl’s asymptotic formula :

λk(M) ≈ Cn|M|−
2
n k

2
n , as k →∞.

Cheeger’s dumbbell example :

inf
M⊂Rn+1;|M|=1

λk(M) = 0.

Colbois-Dryden-E. (BLMS, 2009) :

sup
M⊂Rn+1;|M|=1

λk(M) =∞.

Thus, Polya’s conjecture has no analogue for hypersurfaces. It is
necessary to involve additional geometric quantities in order to
bound the eigenvalues.
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Define
i(M) = sup

L
#M ∩ L,

where L runs over the set of all lines which are transverse to M.

If M is a convex surface then i(M) = 2

If M is algebraic, then i(M) ≤ algebraic degree.

i(M) is called “Thom’s degree” of M.
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Colbois-Dryden-E. (BLMS, 2009) :

λk(M)|M|
2
n ≤ c(n) i(M)2/n k2/n

where c(n) is a constant depending only on n.

Corollary : If M = P−1(0), where P is a polynomial of degree d ,
then

λk(M)|M|
2
n ≤ c(n) d2/n k2/n.

Corollary : For any convex hypersurface M, one has

λk(M)|M|
2
n ≤ c(n) k2/n.

Open problem :

sup
M convex

λ1(M)|M|
2
n = λ1(Sn)|Sn|

2
n ?
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Colbois-E.-Girouard (Crelle’s 2012) :

λk(M)|M|2/n ≤ c(n) I (ΩM)
n+2
n k2/n

where ΩM is the bounded domain such that ∂ΩM = M and

I (ΩM) =
|M|
|ΩM |

n
n+1

is the isoperimetric ratio of ΩM .
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Dimension 2 :

Does the k-th eigenvalue bounded above on the set of compact
surfaces of fixed area and given topology?

Yang-Yau (1980) for k = 1 and Korevaar (1993) for k ≥ 1 :

sup
|M|=1

λk(M) ≤ c (genus(M) + 1) k

Asma Hassanezhad (2011) :

sup
|M|=1

λk(M) ≤ c1 genus(M) + c2 k

Here c , c1, c2 are universal constants.

For a compact surface M0 we define

λ∗k(M0) = sup{λk(M) ; M homeomorphic to M0 and |M| = 1}.



Dimension 2 :

Does the k-th eigenvalue bounded above on the set of compact
surfaces of fixed area and given topology?

Yang-Yau (1980) for k = 1 and Korevaar (1993) for k ≥ 1 :

sup
|M|=1

λk(M) ≤ c (genus(M) + 1) k

Asma Hassanezhad (2011) :

sup
|M|=1

λk(M) ≤ c1 genus(M) + c2 k

Here c , c1, c2 are universal constants.

For a compact surface M0 we define

λ∗k(M0) = sup{λk(M) ; M homeomorphic to M0 and |M| = 1}.



Dimension 2 :

Does the k-th eigenvalue bounded above on the set of compact
surfaces of fixed area and given topology?

Yang-Yau (1980) for k = 1 and Korevaar (1993) for k ≥ 1 :

sup
|M|=1

λk(M) ≤ c (genus(M) + 1) k

Asma Hassanezhad (2011) :

sup
|M|=1

λk(M) ≤ c1 genus(M) + c2 k

Here c , c1, c2 are universal constants.

For a compact surface M0 we define

λ∗k(M0) = sup{λk(M) ; M homeomorphic to M0 and |M| = 1}.



Hersch (1970): λ∗1(S2) = λ1(round sphere) = 8π



Nadirashvili (1996) : For the torus λ∗1(T2) = 8π2
√

3



Figure : The image of a square flat torus by a C 1 isometric map (Borrelli,
Jabrane, Lazarus, Thibert)



Li-Yau (1982) : For the projective plane λ∗1(RP2) = 12π

E.-Giacomini-Jazar (Duke, 2006) : The Klein bottle

λ∗1(K2) = 12πE (2
√

2/3) ' 13.365π,

where E (2
√

2/3) is the complete elliptic integral of the second

kind evaluated at 2
√

2
3 (based on results by Nadirashvili (1996) and

Jakobson-Nadirashvili-Polterovich (2003) )

Nadirashvili (2002) :

λ∗2(S2) = 2λ∗1(S2) = 16π.



Surfaces of higher genus :



λ∗k(γ) = sup{λk(M) : M orientable, genus(M) = γ and |M| = 1}
= sup{λk(M)|M| : M orientable and genus(M) = γ}.

Theorem (Colbois-E.) : λ∗k(γ) ≤ λ∗k(γ + 1).

Theorem (Colbois-E.) : Let γ ≥ 0 and k ≥ 1. Let γ1 . . . , γp and
i1, . . . , ip be such that γ1 + · · ·+ γp = γ and i1 + · · ·+ ip = k, then

λ∗k(γ) ≥ λ∗i1(γ1) + · · ·+ λ∗ip(γp).

In particular,
λ∗k+1(γ)− λ∗k(γ) ≥ 8π.
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Corollary : ∀k ≥ 1,

4

5
πγ + 8πk − 9π ≤ λ∗k(γ) ≤ Aγ + Bk.



No PPW like inequalities since

sup
M

λk+1(M)

λk(M)
= +∞

and

inf
M

λk+1(M)

λk(M)
= 1.


