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Let 2 C R" be a bounded domain and consider the eigenvalue
problem
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u =0 on 0f.

with
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where Sy is the set of all k-dimensional vector subspaces of
C5o ().



Drum :

The equation that governs the vibrations of the membrane of a
drum is the wave equation

o2

PF_Af =0 inQ
f —0 on Q.

where f(x, t) represents the height at time t above the point x.



Separation of variables :
f(x,t) = w(t)u(x)
satisfies the wave equation iff there exists A > 0 such that

%w%—)\w =0
Au+ du =0 inQ
u =0 on 0.

Thus
w(t) = Acos(VAt) + Bsin(V/At)

and
{ Au+du =0 inQ

u =0 on 09.

which means that %\f)\ is the frequency of the vibration.



Diffusion of heat :

D f(x,t) — Axf(x,t) =0 in Q
f(x,0) =g(x) inQ
f(x,t) =0 on 0f2.

where f(x, t) represents the temperature at the point x € Q and
time t. The initial data g(x) is assumed to be zero on 9.



Diffusion of heat :

D f(x,t) — Axf(x,t) =0 in Q
f(x,0) =g(x) inQ
f(x,t) =0 on 00Q.

where f(x, t) represents the temperature at the point x € Q and
time t. The initial data g(x) is assumed to be zero on 9.
Applying the separation of variables we show that

f(X t Z age uk

where {ux} is an L2-orthonormal basis of eigenfunctions with
Aue = Meug and ag = [, g(x)uk(x)dx.

f(x,t) = e Mt (alul(x) + O(e)‘Z_)‘l)t)) as t — 00



Examples:

The rectangle R, , = (0,a) x (0, b) :

2 2
Spec(Rap) = {/\n,m =7 (;72 + ,22> cn>1, m> 1}

with corresponding eigenfunctions

. Nt . .mT
Un,m(Xay) = sm(?x)sm(Ty)

In particular, the least eigenvalue is given by



The unit disk D; = {x?> + y?> < 1}
Using polar coordinates (r, ), we may write

u(r,0) = wvo(r +Z Va(r) cos(nB) + v_p(r)sin(nf))

n>1



The unit disk D; = {x?> + y?> < 1}
Using polar coordinates (r, ), we may write

u(r,0) = wvo(r +Z Va(r) cos(nB) + v_p(r)sin(nf))

n>1

v v+ (P =)y, =0

with v,(1) = 0. Setting v,(r) = y(V/Ar) we get, with s = v/Ar,

2y + sy + (s> — n?)y =0
(Bessel equation) with y(v/\) = 0.
Thus, v,(r) = Jo(v/Ar), where J, is a Bessel function of the first
kind. The eigenvalues of D; are the squares of the zeroes of J,,.
In particular,

A1(D1) = j§ 1 ~ (2.4048)°

where jp 1 is the first positive zero of the Bessel function Jp.
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Eigenvalues and Volume

Let Q € R" be a bounded domain.
One has

1
M(c Q) = gAk(Q) and |c Q| =c"|Q|
where |Q| stands for the volume of Q.

Weyl's asymptotic formula (1911) :

M(Q) & ColQ 7k, as k — 0o
_2
where C, = 472w, " with w, = volume of the unit ball B".

In dimension 2

k
A(Q) ~ 477@, as k — 00



Conjecture of Pélya (1961): Yk > 1

M(Q) > Go|Q| 7k



Conjecture of Pélya (1961): Yk > 1

M(Q) > Go|Q| 7k

Li-Yau (1983): Vk > 1

n 2.2
M () > ——C,|Q| nkn
K(Q) > 5 Glal
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Minimal eigenvalues
Define, Vk > 1,

2
No= inf M(Q) = inf M(Q)Q]5.
K= geafors k() = inf M(2)I

Remark 1 : A} does not change if we add a connectedness
constraint in the definition.

Remark 2 : sup  A1(R2) =40
QCR";(Q|=1
For example, for the rectangle R, one has

1 1
Al(Ra,b) = 7T2 <32 + b2> — 00

asa— 0 and b:%.
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Krahn-Szego : A = 2%X{
The infimum of A; is achieved by the disjoint union of two balls of
the same radius.




Dimension 2 :
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Dimension 2 :
Conjecture : A3 = wAs(disk) = 7rj12’1 ~ 46.125

Conjecture : \; is achieved by the union of two disks whose radii
are in the ratio 2 ~ 1.59 and  \j = A] + \j ~ 64.293
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Szego problem : Does A} achieved by a disk or a union of disks for
all k>17?

Wolf-Keller (1994) : Aj; is not achieved by a disk or a union of
disks

Amandine Berger (2015) : Vk > 5, A} is not achieved by a disk or
a union of disks




Edouard Oudet (2004)

No Formes optimales de W&k Formes optimales
] O 46.125 O 46.125
4 O O 64.293 O O 64.293
5 O szae C:j 78.47
5] OO 92.250 Q 88.96
7 O OO 110.42 OQ 107.47
] O 127.88 Q 1199
9 OOO 136.37 & 133.52
10 O 154.62 Q 143.45
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Colbois-E. (Math. Z. 2014) : The sequence )\’;”/2 is subadditive,
i.e., Vi, - ,iPEN* with i1—|—i2+---—|—ip:k,

)\2”/2 SA;‘;”/2+AZ”/2+"'+)\TPn/2.

The equality holds iff there exists a minimizing sequence Qp for A
such that each Qy is a disjoint union of p domains AY, .- ,AI’;’
with, for each k < p, ALV is, up to volume normalization, a
minimizing sequence of domains for A;, .
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Corollary:
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In particular, in dimension 2

Ne1 — Ak < 7r101
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In particular, in dimension 2
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Consequence : some of the numerical computations made by
Oudet are not accurate. For example, he obtained \¥ =~ 88.96 and
A7 ~ 107.47, but 107.47 — 88.96 exceeds 18.168.

Improvements of Oudet’s calculations have been obtained recently
by Antunes and Freitas using our theorem.



Corollary:
x 2 %2 ¥2 __ n
k412 A2 S A2 =g gwn

In particular, in dimension 2

Nis1— Np S 7 jgq ~ 18.168

Consequence : some of the numerical computations made by
Oudet are not accurate. For example, he obtained \¥ =~ 88.96 and
A7 ~ 107.47, but 107.47 — 88.96 exceeds 18.168.

Improvements of Oudet’s calculations have been obtained recently
by Antunes and Freitas using our theorem.

Iterating the inequality of the Corollary we get
Ak < 77]3,1/‘
which, together with Polya’'s conjecture gives

Amk < \; < 5.784 7k



Fekete's Subadditive Lemma leads to :

Ak(n)
k2/n

. Ap(n) . Ag(n)
lim 2/ _”/1 2/

Corollary : The sequence converges to a positive limit with




Fekete's Subadditive Lemma leads to :

Corollary : The sequence /\52(/:) converges to a positive limit with
Ai(n Ax(n
lim i ):in k( )
k2/n Kk Kk2/n
Thus,
As(n
Pélya’s conjecture < lim k() _ 42w, 2/n
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Universal properties

Question : Does any finite sequence 0 < A\; < Ap < --- < A of
numbers can be realized as the beginning of the Dirichlet spectrum
of a bounded domain 7

Payne-Pdlya-Weinberger (1954): VQ C R" and Vk > 1,

k
Mt (@) = M) < 5 23 N(@),

In particular,

Mer1(9) 4
SIS o T
W) ST

Ashbaugh-Benguria (1992):

A2(9) < A2(B™)
)\1(9) - )\1(3")‘




Yang (1991): VvQ C R" and Vk > 1,

k

k
S ka(R) ~ M@ < T3 (Q) (@) — ()
i=1

i=1



Yang (1991): VvQ C R" and Vk > 1,
k

k
S ka(R) ~ M@ < T3 (Q) (@) — ()
i=1

i=1

Cheng-Yang (2007):
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Weyl's asymptotic formula :

A(M) & Co|M|"7kn,  as k — oc.

Cheeger's dumbbell example :

inf (M) =0.
I\/IC]R”TI;\M|:1 k( )

Colbois-Dryden-E. (BLMS, 2009) :

sup (M) = 0.
MCR"L;|M|=1

Thus, Polya's conjecture has no analogue for hypersurfaces. It is
necessary to involve additional geometric quantities in order to
bound the eigenvalues.
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Define
i(M) =sup#MnNL,
L

where L runs over the set of all lines which are transverse to M.

If M is a convex surface then /(M) =2
If M is algebraic, then i((M) < algebraic degree.
i(M) is called “Thom's degree” of M.
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Colbois-Dryden-E. (BLMS, 2009) :

A(M)IM|7 < c(n) i(M)X/" K3/
where c(n) is a constant depending only on n.

Corollary : If M = P~1(0), where P is a polynomial of degree d,
then .
(M) M7 < c(n) d?/" K2/,

Corollary : For any convex hypersurface M, one has
A(M)[M[7 < c(n) K¥/".

Open problem :

2

sup A (M)|M|7 = Ai(S")[S”

M convex

?



Colbois-E.-Girouard (Crelle's 2012) :

n+2

A(M)[MP/" < c(n) 1(Qu) ™ k3"

where Qy is the bounded domain such that 0Qy = M and

Q) = \M\n
Q|+

is the isoperimetric ratio of Q.
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Dimension 2 :

Does the k-th eigenvalue bounded above on the set of compact
surfaces of fixed area and given topology?

Yang-Yau (1980) for k =1 and Korevaar (1993) for k > 1 :

sup A(M) < c (genus(M) +1) k
|M|=1

Asma Hassanezhad (2011) :

sup A(M) < ¢ genus(M) + ¢z k
IM|=1

Here ¢, c¢1, ¢ are universal constants.

For a compact surface My we define

Ae(Mp) = sup{A\x(M); M homeomorphic to My and |M| = 1}.



Hersch (1970): A\%(S?) = A1(round sphere) = 87




8r?
V3

For the torus A\}(T?) =

Nadirashvili (1996) :




W Borrelli, . Jabrane, F. Lazarus, D. Rohmer, B. Thibef

Figure : The image of a square flat torus by a C* isometric map (Borrelli,
Jabrane, Lazarus, Thibert)



Li-Yau (1982) : For the projective plane \j(RP?) = 127
E.-Giacomini-Jazar (Duke, 2006) : The Klein bottle

\;(K?) = 127E(2v2/3) ~ 13.365 T,

where E(21/2/3) is the complete elliptic integral of the second

kind evaluated at ¥ (based on results by Nadirashvili (1996) and
Jakobson-Nadirashvili-Polterovich (2003) )

Nadirashvili (2002) :

M5(S?) = 2X\5(S?) = 167.



Surfaces of higher genus :
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k

sup{Ax(M) : M orientable, genus(M) =~ and |M| = 1}
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(7)) = sup{\(M) : M orientable, genus(M) =~ and |[M| =1}
= sup{A(M)|M| : M orientable and genus(M) = ~}.

Theorem (Colbois-E.) :  Ai(7y) < Ap(y +1).

Theorem (Colbois-E.) : Let v > 0and k > 1. Let 71...,7, and
i1,...,Ip besuch that yy +---+7p =7y and ii +---+ i, = k, then

() = A () + -+ AT ()

In particular,
AMer1(7) = Ak(y) = 8.



Corollary : Vk > 1,

4
Rt + 8k — 91 < X (v) < Ay + Bk.



No PPW like inequalities since

Ak+1(M)
sup ——
M (M)

and

inf (M)

Ak+1(M)

:+Oo

=1



