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Recap of Lecture I

Scalar geometry of N = 2 theories depends on: space-time
dimension d and field content: vector multiplets or hypermultiplets

Special geometries of rigid N = 2 supersymm. theories

d vector multiplets hypermultiplets

5 affine special real hyper-Kähler

4 affine special Kähler hyper-Kähler

3 hyper-Kähler hyper-Kähler

Special geometries of N = 2 supergravity theories

d vector multiplets hypermultiplets

5 projective special real quat. Kähler

4 projective special Kähler quat. Kähler

3 quaternionic Kähler quat. Kähler
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Plan of the second lecture

Constructions induced by dimensional reduction:

I rigid r-map

I rigid c-map

I supergravity r-map

I supergravity c-map

I global properties of these constructions

More general constructions:

I one loop quantum corrections of supergravity c-map metrics

I HK/QK-correspondence
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The rigid r-map I: from affine special real to affine special
Kähler manifolds

Dimensional reduction from 5 to 4 space-time dimensions

I It was observed by de Wit and Van Proeyen that dim.
reduction of sugra coupled to vector multiplets from 5 to 4
space-time dimensions relates the scalar geometries by a
construction called the supergravity r-map [DV92].

I The analogous construction for theories without gravity is
called the rigid r-map [CMMS].

I It relates affine special real manifolds to affine special Kähler
manifolds

I and has the following geometric description [AC].
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The rigid r-map II

Geometric description of the rigid r-map

I Let (M,∇, g) be an intrinsic ASR mf. Consider the tangent
bdl. π : N = TM → M.

I Using the flat connection ∇ we can canonically identify

TN = T hN ⊕ T vN ∼= π∗TM ⊕ π∗TM.

I Therefore

J :=

(
0 −1
1 0

)
,

defines an almost cx. structure on N.

I Similarly,

gN :=

(
g 0
0 g

)
defines a Riem. metric on N.
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The rigid r-map III

Geometric description of the rigid r-map continued

I Next we define a (1, 2)-tensor field SN on N by

SN
X h :=

(
SX 0
0 −SX

)
, SN

X v :=

(
0 −SX
−SX 0

)
,

where S = D −∇, D = L.C ., and X h, X v are the hor. and
vert. lifts of X ∈ X(M).

I Finally we define a connection ∇N := DN − SN on N, where
DN = L.C .

Theorem
Let (M,∇, g) be an affine special real manifold. Then
(N, gN , J,∇N) is an affine special Kähler manifold.

I The correspondence (M,∇, g) 7→ (N, gN , J,∇N) is called the
rigid r-map.
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The rigid c-map I: from affine special Kähler to
hyper-Kähler manifolds

Dimensional reduction of vector multiplets from 4 to 3
space-time dimensions

I As observed by Cecotti, Ferrara and Girardello, dim. reduction
of N = 2 vector multiplets from 4 to 3 space-time dimensions
relates the corresponding scalar geometries by a construction
called the rigid c-map [CFG].

I It relates affine special Kähler to hyper-Kähler manifolds

I and has the following geometric description [ACD].
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The rigid c-map II

Geometric description of the rigid c-map

I Let (M, J, g ,∇) be an affine special Kähler manifold.
Consider the cotangent bdl. π : N = T ∗M → M.

I Using the flat connection ∇ we can canonically identify

TN = T hN ⊕ T vN ∼= π∗TM ⊕ π∗T ∗M.

I Therefore

gN =

(
g 0
0 g−1

)
defines a Riem. metric on N and

I

J1 =

(
J 0
0 J∗

)
, J2 =

(
0 −ω−1

ω 0

)
define two almost cx. structures on N.
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The rigid c-map III

Geometric description of the rigid c-map continued

Theorem
Let (M, J, g ,∇) be an affine special Kähler manifold. Then
(N, gN , J1, J2, J3 = J1J2) is a hyper-Kähler manifold.

I The correspondence (M, J, g ,∇) 7→ (N, gN , J1, J2, J3 = J1J2)
is called the rigid c-map.
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The supergravity r-map I: from projective special real to
projective special Kähler manifolds

I The sugra r-map of [DV] can be described as follows [CHM]:

I Let H ⊂ Rn+1 be a PSR mf. and h the corresponding cubic
polynomial.

I Then U = R>0 ·H ⊂ Rn+1 is an open cone.

I We endow it with the Riem. metric

gU = −1

3
∂2 ln h,

isometric to the product metric dt2 + gH on R×H

I and finally the domain M̄ = U × Rn+1 with the Riem. metr.

gM̄ :=
3

4

n+1∑
a,b=1

gab(dxadxb+dyadyb), gab := gU

(
∂

∂xa
,
∂

∂xb

)
.
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The supergravity r-map II

Theorem

(i) (M̄, gM̄) defined above is projective special Kähler with
respect to the cx. structure J defined by the embedding

M̄ = U × Rn+1 → Cn+1, (x , y) 7→ y + ix .

(ii) The natural inclusions H ⊂ U ∼= U × {0} ⊂ M̄ are isometric
and totally geodesic.

I The correspondence H 7→ (M̄, J, gM̄) is called the
supergravity r-map.

I It maps PSR mfs. of dim. n to PSK mfs. of (real) dim. 2n+2.
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The supergravity c-map I: from projective special Kähler to
quaternionic Kähler manifolds

I Dim. reduction of sugra coupled to vector multiplets from 4 to
3 space-time dimensions relates the corresponding scalar
geometries by a construction called the supergravity c-map.

I The resulting quaternionic Kähler metric gFS was computed
by Ferrara and Sabharwal [FS], cf. [H,CHM, ...].

I Here we follow [CHM]: In the case of a PSK domain (M̄, gM̄)
of dim. 2n the metric gFS has the following structure:

gFS = gM̄ + gG ,

where gG is a family of left-invariant Riemannian metrics on
G = Iwa(SU(n + 2, 1)) depending on p ∈ M̄.

I In particular, gFS is defined on the product N̄ := M̄ × G .

I The inclusion M̄ ∼= M̄ × {e} ⊂ N̄ is totally geodesic.
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The supergravity c-map II

The explicit form of the family of metrics (gG (p))p∈M :

1

4φ2
dφ2 +

1

4φ2

(
d φ̃+

∑
(ζ id ζ̃i − ζ̃idζ i )

)2
+

1

2φ

∑
Iij(p)dζ idζ j

+
1

2φ

∑
Iij(p)

(
d ζ̃i +

∑
Rik(p)dζk

)(
d ζ̃j +

∑
Rj`(p)dζ`

)
,

I where (φ, φ̃, ζ1, . . . , ζn+1, ζ̃1, . . . , ζ̃n+1) : G → R>0 × R2n+3 is
a global coord. system on G ∼= R2n+4 and

I Rij , Iij are real and imaginary parts of

F̄ij +
√
−1

∑
Nikz

k
∑

Nj`z
`∑

Nklzkz`
,

I determined by the prepot. F of the underlying CASK dom.

I I = (Iij) > 0 [CHM]. Hence (Iij) = I−1 is defined and gG > 0.
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The supergravity c-map III

Geometric interpretation of the fiber metric

I (G , gG (p)) is isometric to CHn+2.

I The principal part of

gG =
1

4φ2
dφ2 +

1

4φ2

(
d φ̃+

∑
(ζ id ζ̃i − ζ̃idζ i )

)2
+

1

2φ
gpr
G

is related to the CASK domain π : M → M̄ as follows:

I M has a can. realization [ACD] as a Lagrangian cone in
V = (C2n+2,Ω, γ), where gM = Re γ|M is induced.

I Therefore we have a hol. map
M̄ → Gr1,n

0 (V ) = Sp(R2n+2)/U(1, n), p 7→ Lp.

I Composing it with the Sp(R2n+2)-equivariant embedding

Gr1,n
0 (V )→ Sym1

2,2n(R2n+2) = SL(2n + 2,R)/SO(2, 2n)

we obtain p 7→ (gIJ(p)) ∈ Sym1
2,2n(R2n+2).
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The supergravity c-map IV

Geometric interpretation of the fiber metric continued

I In fact,
∑

gIJ(p)dqIdqJ = gM(p̃), ∀p̃ ∈ π−1(p), where
(qI )I=1,...,2n+2 = (x i = Re z i , yj = ReFj)i ,j=0,...,n.

I Next we change the indefinite scalar product (gIJ(p)) to
(ĝIJ(p)) > 0 by means of an Sp(R2n+2)-equivariant diffeo.
ψ : F 1,n

0 (V )→ F n+1,0
0 (V ) from Griffiths to Weil flags.

I In the case of the CY3 moduli space this is related to the
switch from Griffiths to Weil intermediate Jacobians [C,H]

I This corresponds to switching the sign of the indefinite metric
gM on the negative definite distribution D⊥.

I We show that the cx. symm. matrix R + iJ ∈ Symn+1,0(Cn+1)
corresponds to the pos. def. Lagrangian subspace L′ defined
by ψ(`, L) = (`, L′), where L = Lp and ` = p = Cp̃. This
proves J > 0.

I Finally we prove that gpr
G (p) =

∑
ĝ IJ(p)dqIdqJ , where

(qI ) = (ζ̃i , ζ
j). 16 / 22



The supergravity c-map V

Concluding remark

I In the general case, when the PSK mf. M̄ is covered by PSK
domains, we show that the local Ferrara-Sabharwal metrics
are consistent and define a QK mf. N̄ which fibers over M̄ as
a bundle of groups with totally geodesic can. section M̄ ↪→ N̄.

I This shows that the supergravity c-map is globally defined for
every PSK mf.
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Global properties of the r- and c-maps

Theorem [CHM]

(i) The supergravity r-map maps complete PSR mfs. H of dim. n
to complete PSK mfs. M̄ of dim. 2n+2.

(ii) The supergravity c-map maps complete PSK mfs. M̄ of dim.
2n to complete QK mfs. N̄ of dim. 4n + 4 and Ric < 0.

(iii) There are totally geodesic inclusions H ⊂ M̄ and M̄ ⊂ N̄ in
(i) and (ii), respectively.

Remarks

I The same results hold for the rigid r- and c-map but

I 6 ∃ nonflat complete ASK mfs. [L], as follows [BC] from the
Calabi-Pogorelov thm., and, hence, no nonflat ASR mfs.

I ∃ examples of homogeneous and, hence, complete PSR and
PSK mfs. See [DV92,AC00] for some classification results.
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One-loop correction of the FS-metric I

Consider the FS-metric associated with a PSK domain M̄. The
following symmetric tensor field is called one loop correction of the
FS-metric [RSV]:

g c
FS =

φ+ c

φ
gM̄ +

1

4φ2

φ+ 2c

φ+ c
dφ2

+
1

4φ2

φ+ c

φ+ 2c
(d φ̃+

∑
(ζ jd ζ̃j − ζ̃jdζ j) + ic(∂̄ − ∂)K)2

+
1

2φ

∑
dqaĝ

abdqb +
2c

φ2
eK
∣∣∣∑(X jd ζ̃j + Fj(X )dζ j)

∣∣∣2 ,
where c ∈ R, X j = z j/z0 and

K = − log
(∑

X iNij X̄
j
)

is the Kähler potential for the projective special Kähler metric gM̄ .
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One-loop correction of the FS-metric II

Theorem [ACDM]

For c ≥ 0, the one loop correction g c
FS defines a 1-parameter

family of quaternionic Kähler metrics on N̄ = M̄ × G deforming
the FS-metric gFS = g0

FS .

Sketch of proof

I Applying the rigid c-map to the underlying CASK mf. M we
obtain a pseudo-HK mf. N.

I The ∇-horizontal lift of 2Jξ defines a Killing v.f. Z on N
satisfying the assumptions of the HK/QK-correspondence
explained on the next slides.

I Applying the HK/QK-correspondence yields a 1-parameter
family of pseudo-QK metrics, of which we determine the
domain of positivity.

I Finally we check that this family coincides with the one loop
correction of the FS-metric. �
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The HK/QK-correspondence I
The following result generalizes work of Haydys [Ha]:

Theorem [ACM]

I Let (M, g , J1, J2, J3) be a pseudo-HK mf. with a timelike or
spacelike Killing v.f. Z s.t.

I LZJ1 = 0, LZJ2 = −2J3,
I ∃f : df = −ω1(Z , ·), ω1 = g(J1·, ·),
I f and f1 := f − g(Z ,Z )/2 are nowhere zero.

Then from the data (M, g , J1, J2, J3, f ) one can construct a
pseudo-QK mf. (M ′, g ′) with dimM ′ = dimM. The signature
of g ′ depends only on that of g and the signs of f and f1.

I Cases when g ′ > 0:

I g ′ > 0 of Ric > 0 if g > 0 and f1 > 0 and

I g ′ > 0 of Ric < 0 if either:
g > 0 and f < 0 or
g has signature (4k , 4), f < 0 and f1 > 0.
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The HK/QK-correspondence II

Remarks

I In [ACDM] we give a simple explicit formula for the
QK-metric g ′ obtained from the HK/QK-correspondence.

I Using this formula, we check that the rigid c-map metric is
mapped to the one loop corrected supergravity c-map metric
by this correspondence.

I A similar result was obtained in [APP] by applying twistor
methods and the inverse construction, the
QK/HK-correspondence.

I The simplest case of the construction is M̄ = {pt}. In this
case, we obtain a 1-parameter deformation of CH2 by explicit
complete QK metrics. (The full domain of positivity of the
one-loop correction has also components with incomplete
metric, including a metric found by Haydys [Ha].)

I This example of the HK/QK-correspondence is also discussed
in [Hi13], but without the QK metric.
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