# Rigidity results for spin manifolds with foliated boundary

#### Georges Habib, Lebanese University

(joint work with F. El Chami, N. Ginoux and R. Nakad)

NDU-CAMS, April 2015

http://fs2.ul.edu.lb/math/georges.habib



 Let (M<sup>n+1</sup>, g) be a Riemannian manifold endowed with a Riemannian flow F given by a unit vector field ξ. That is, the vector ξ defines a 1-dimensional foliation on M by its integral curves satisfying the rule

 $(\mathcal{L}_{\xi}g)(Z,W)=0$ 

for all Z, W orthogonal to  $\xi$ .

 Equivalently, this means that the endomorphism
 h = ∇<sup>M</sup>ξ : ξ<sup>⊥</sup> → ξ<sup>⊥</sup>, called the O'Neill tensor, is a
skew-symmetric tensor field.

Rigidity results

## Transversal Levi-Civita connection

• There exists a unique metric connection on the normal bundle  $Q = \xi^{\perp}$  given by

$$\nabla_X Z = \begin{cases} \pi([X, Z]) & \text{for } X = \xi \\ \\ \pi(\nabla^M_X Z) & \text{for } X \perp \xi \end{cases}$$

where  $Z \in \Gamma(Q)$  and  $\pi : TM \longrightarrow Q$  is the orthogonal projection.

• Basic Property:  $\xi \lrcorner R^{\nabla} = 0$ . Therefore, one may define  $\operatorname{Ric}^{\nabla}, \operatorname{Scal}^{\nabla}, \dots$ 

Rigidity results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Gauss-type formulas

• We have the Gauss-type formulas: For all  $Z, W \in \Gamma(Q)$ 

$$\begin{cases} \nabla_{\xi}^{M} Z = \nabla_{\xi} Z + h(Z) - g(Z, \kappa)\xi \\ \nabla_{Z}^{M} W = \nabla_{Z} W - g(h(Z), W)\xi \end{cases}$$

where  $\kappa := \nabla_{\xi}^{M} \xi$  is the mean curvature of the flow.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Spin Riemannian flow

- Assume that M is a spin manifold. As we have the orthogonal splitting  $TM = \mathbb{R}\xi \oplus Q$ , the normal bundle carries a spin structure (as a vector bundle) given by the pull-back of the one on M.
- We have the isomorphisms

 $\left\{ \begin{array}{ll} \Sigma M \simeq \Sigma Q & \text{if } n \text{ is even} \\ \\ \Sigma M \simeq \Sigma Q \oplus \Sigma Q & \text{if } n \text{ is odd.} \end{array} \right.$ 

Rigidity results

## Spinorial Gauss-type formulas

 The Clifford multiplications on M and Q are identified as: For all Z ∈ Γ(Q), φ ∈ Γ(ΣM),

$$\left\{ \begin{array}{ll} Z \cdot_M \varphi = Z \cdot_Q \varphi & \text{if } n \text{ is even} \\ \\ Z \cdot_M \xi \cdot_M \varphi = (Z \cdot_Q \oplus - Z \cdot_Q) \varphi & \text{if } n \text{ is odd.} \end{array} \right.$$

 We have the spinorial Gauss-type formulas on ΣM and ΣQ: For all φ ∈ Γ(ΣM)

$$\begin{cases} \nabla_{\xi}^{M}\varphi = \nabla_{\xi}\varphi + \frac{1}{2}\Omega \cdot_{M}\varphi + \frac{1}{2}\xi \cdot_{M}\kappa \cdot_{M}\varphi \\ \nabla_{Z}^{M}\varphi = \nabla_{Z}\varphi + \frac{1}{2}\xi \cdot_{M}h(Z) \cdot_{M}\varphi \end{cases}$$

where  $\Omega(\cdot, \cdot) = g(h \cdot, \cdot)$  is a 2-form on  $\Gamma(Q)$ .

• The basic Dirac operator is defined on the set of basic spinors (that is, spinors constant along the leaves) as

$$D_b = \sum_{i=1}^n e_i \cdot_Q \nabla_{e_i} - \frac{1}{2} \kappa \cdot_Q,$$

where  $\{e_i\}_{i=1,\dots,n}$  is an orthonormal frame of  $\Gamma(Q)$ .

• We have the relations

$$\begin{cases} D_{M} = D_{b} - \frac{1}{2} \xi \cdot_{M} \Omega \cdot_{M} & \text{if } n \text{ is even} \\ \\ D_{M} = \xi \cdot_{M} (D_{b} \oplus -D_{b}) - \frac{1}{2} \xi \cdot_{M} \Omega \cdot_{M} & \text{if } n \text{ is odd.} \end{cases}$$



- Let (N<sup>n+2</sup>, g) be a Riemannian spin manifold with smooth boundary ∂N = M. The unit normal vector field ν induces the spin structure on N to M. In this case, the extrinsic spinor bundle S := ΣN|<sub>M</sub> is identified with the intrinsic one ΣM for n odd or to a double copy for n even.
- We have the Gauss formula: For all  $X \in \Gamma(TM), \varphi \in \Gamma(S)$

$$\nabla_X^N \varphi = \nabla_X^{\mathbf{S}} \varphi + \frac{1}{2} \mathcal{A}(X) \cdot_{\mathbf{S}} \varphi,$$

where  $A = -\nabla^{N}\nu$  is the second fundamental form of the boundary and " $\cdot_{\mathbf{S}}$ " is the Clifford multiplication given by  $X \cdot_{\mathbf{S}} \varphi = X \cdot \nu \cdot \varphi$ .

## Eigenvalue estimate

#### Theorem (O. Hijazi - S. Montiel, 2001)

Let M be the compact boundary of a spin manifold  $(N^{n+2},g)$  with non-negative scalar curvature. Assume that the mean curvature H is positive. The first non-zero eigenvalue of the Dirac operator of M satisfies

$$\lambda \geq \frac{n+1}{2} \inf_M H.$$

The equality case is realized if and only if H is constant and any eigenspinor is the restriction of a parallel spinor on N.

Direct Application : Spinorial proof of the Alexandrov theorem.

Rigidity results 0●00 Manifolds with foliated boundary 000000000000

## Rigidity results

- If the boundary carries a Killing spinor, under some curvature assumptions, the boundary is totally umbilical and the ambient manifold carries a parallel spinor (it is thus Ricci-flat). Consequence: A complete Ricci-flat Riemannian manifold of dimension at least 3, whose mean-convex boundary is isometric to the round sphere, is a flat disc [O. Hijazi-S. Montiel, 2001].
- In general, given a solution of the Dirac equation, the boundary has to be connected and the solution is the restriction of a parallel spinor.

Consequence: If the boundary of a manifold is isometric to the round sphere with mean curvature  $H \ge 1$ , the manifold is isometric to the unit closed ball [S. Raulot, 2008].

## Integral inequality

### Theorem (O. Hijazi - S. Montiel, 2014)

Let (N, g) be a spin manifold with non-negative scalar curvature. Assume that the mean curvature of the boundary is positive. For any spinor field  $\varphi \in \Gamma(\mathbf{S})$ , the inequality holds

$$0 \leq \int_{\mathcal{M}} \frac{1}{H} \Big( |\mathbf{D}_{\mathbf{S}} \varphi|^2 - \frac{(n+1)^2}{4} H^2 |\varphi|^2 \Big) dv,$$

where dv the volume element on M and  $D_S$  is the Dirac operator defined on S.

Property: 
$$\mathbf{D}_{\mathbf{S}} = \frac{n+1}{2}H - \nu \cdot D_N - \nabla_{\nu}^N$$
.

Equality case

- The equality is characterized by the existence of two parallel spinors  $\psi, \theta \in \Gamma(\Sigma N)$  such that  $P_+\varphi = P_+\psi$  and  $P_-\varphi = P_-\theta$ . The operators  $P_{\pm}$  are the orthogonal projections onto the eigenspaces corresponding to the  $\pm 1$ -eigenvalues of the endomorphism  $i\nu$ .
- Direct application: Shi-Tam type inequality, Positive mass theorem...

Rigidity results

Manifolds with foliated boundary •••••••

## Manifolds with foliated boundary

- Let (N<sup>n+2</sup>, g) be a spin manifold whose boundary M carries a Riemannian flow given by a unit vector field ξ.
- We have the isomorphisms:

 $\left\{ \begin{array}{ll} \Sigma Q \oplus \Sigma Q \simeq \Sigma M \oplus \Sigma M \simeq {\sf S} & \text{if } n \text{ is even} \\ \\ \Sigma Q \oplus \Sigma Q \simeq \Sigma M \simeq {\sf S} & \text{if } n \text{ is odd.} \end{array} \right.$ 

Rigidity results

## Main results

#### Theorem

Let N be an (n + 2)-dimensional compact Riemannian spin manifold with non-negative scalar curvature, whose boundary hypersurface M has a positive mean curvature H and is endowed with a Riemannian flow. Assume that there exists a spinor field  $\varphi$ such that  $D_b \varphi = \frac{n+1}{2} H_0 \varphi$ , where  $H_0$  is a positive basic function. Then, we have

$$0 \leq \int_{\mathcal{M}} \frac{1}{H} \big( (n+1)^2 H_0^2 |\varphi|^2 + |\Omega \cdot_{\mathcal{M}} \varphi|^2 - (n+1)^2 H^2 |\varphi|^2 \big) dv.$$

くして 前 ふかく 山下 ふゆう ふしゃ

## Equality case

#### Theorem

If we assume that  $g(A(\xi), \xi) \ge 0$  in the previous theorem, then equality holds in the inequality if and only if h = 0 (that is the flow is a local product) and  $H_0 = H$ . In this case, we get that  $A(\xi) = 0$ and the spinors  $\varphi$  and  $\xi \cdot \varphi$  are respectively the restrictions of parallel spinors on N if n is even, and if n is odd the spinor  $\varphi + \xi \cdot_M \varphi$  is the restriction of a parallel spinor on N.

Rigidity results

Manifolds with foliated boundary

 $\square$ 

## Proof of the inequality for n even

• We have:

$$\mathbf{D}_{\mathbf{S}}\varphi = D_{\mathbf{M}}\varphi = \frac{n+1}{2}H_{\mathbf{0}}\varphi - \frac{1}{2}\xi \cdot_{\mathbf{M}} \Omega \cdot_{\mathbf{M}} \varphi$$

and

$$\mathbf{D}_{\mathbf{S}}(\xi \cdot \varphi) = -D_{\mathcal{M}}(\xi \cdot \varphi) = \frac{n+1}{2}H_{0}\xi \cdot \varphi - \frac{1}{2}\nu \cdot \Omega \cdot \varphi$$

- We used the fact that  $D_b(\xi \cdot) = -\xi \cdot D_b$ .
- By computing the norm in both equations and taking the sum, we get the result.

Rigidity results 0000 Manifolds with foliated boundary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

## Characterization of the equality case

#### Lemma

If the equality holds, we have

$$h(X) \cdot_{M} \varphi + g(A(\xi), X) \frac{H_{0}}{H} \varphi - \frac{1}{(n+1)H} g(A(\xi), X) \xi \cdot_{M} \Omega \cdot_{M} \varphi$$
$$= -\frac{1}{(n+1)H} A(X) \cdot_{M} \Omega \cdot_{M} \varphi,$$
(1)

for all  $X \in \Gamma(TM)$ .

## Sketch of the proof of the lemma

- There exists two parallel spinors  $\psi$  and  $\theta$  on N such that  $P_+\varphi = P_+\psi$  and  $P_-\varphi = P_-\theta$ . Applying  $D_S$  on both sides, we get  $P_-(D_S\varphi) = \frac{n+1}{2}HP_-\psi$  and  $P_+(D_S\varphi) = \frac{n+1}{2}HP_+\theta$ .
- The same technique can be used for the spinor field ξ · φ and two other spinor fields Ψ and Θ exists.
- Differentiating the equations ξ · P<sub>-</sub>θ = P<sub>+</sub>Ψ and ξ · P<sub>+</sub>ψ = P<sub>+</sub>Θ along any vector field X in Γ(TM), we deduce the result.

## Proof of the theorem

• Taking the trace of Equation (1) and multiplying the new equation by  $A(\xi) \cdot_M \xi \cdot_M$ , we find

$$-A(\xi) \cdot_{M} \kappa \cdot_{M} \varphi + \mathcal{B}\Omega \cdot_{M} \varphi + \frac{H_{0}}{H} |A(\xi)|^{2} \xi \cdot_{M} \varphi$$
$$+(n+1)H_{0}A(\xi) \cdot_{M} \varphi + ((n+1)H + 2g(A(\xi),\xi)) \xi \cdot_{M} \kappa \cdot_{M} \varphi = 0,$$
where  $\mathcal{B} = \frac{1}{(n+1)H} |A(\xi) + (n+1)H\xi|^{2} \neq 0.$ 

Replacing Ω ·<sub>M</sub> φ by its value from the above equation into (1) and taking X = ξ, we get HIκ ·<sub>M</sub> φ + H<sub>0</sub>Jφ = 0.

 $\bullet$  The terms  ${\mathcal I}$  and  ${\mathcal J}$  are defined by

 $\mathcal{I} := (n+1)H + g(A(\xi), \xi),$ 

$$\mathcal{J} := (n+1) Hg(A(\xi),\xi) + |A(\xi)|^2.$$

 The Hermitian product by φ gives that h = 0 and Aξ = 0. Applying D<sub>S</sub> on both equalities:

$$H_0P_+\varphi = HP_+\theta$$
 and  $H_0P_-\varphi = HP_-\psi$ 

yields to  $H_0 = H$  and  $\varphi = \psi = \theta$  on M.

Rigidity results

## Rigidity results

#### Corollary

Let N be a compact spin Riemannian (n + 2)-dimensional manifold with non-negative scalar curvature, whose boundary hypersurface M has positive mean curvature H and is endowed with a Riemannian flow. Assume that there exist a spinor field  $\varphi$  such that  $D_b\varphi = \frac{n+1}{2}H_0\varphi$ , where  $H_0$  is a positive basic function with  $H_0 + \frac{1}{n+1}[\frac{n}{2}]^{\frac{1}{2}}|\Omega| \leq H$ . Then the vector field  $\xi$  is parallel on M and  $A(\xi) = 0$ . Moreover, the spinors  $\varphi$  and  $\xi \cdot \varphi$  are respectively the restrictions of parallel spinors on N if n is even and if n is odd, the spinor  $\varphi + \xi \cdot_M \varphi$  is the restriction of a parallel spinor on N. Rigidity results

Manifolds with foliated boundary 0000000000000

## Basic Killing spinors

#### Theorem

Let  $(N^{n+2}, g)$  be a spin manifold of non-negative scalar curvature with connected boundary M of positive mean curvature H. Assume that M is endowed with a minimal Riemannian flow carrying a maximal number of basic Killing spinors of constant  $-\frac{1}{2}$ (resp. a maximal number of basic Killing spinors of constants  $-\frac{1}{2}$ and  $\frac{1}{2}$ ) if n is even (resp. if n is odd). If the inequality  $\frac{n}{n+1} + \frac{1}{n+1} [\frac{n}{2}]^{\frac{1}{2}} |\Omega| \le H$  holds, the boundary M is isometric to the Riemannian product  $\mathbb{S}^1 \times \mathbb{S}^n$  and N is isometric to  $\mathbb{S}^1 \times B$ , where B is the unit ball in  $\mathbb{R}^{n+1}$ .

#### Preliminaries Rigidity 0000000 0000

## Sketch of the proof

- From the Gauss and O'Neill formulas, we deduce that A(X) = X for all  $X \in \Gamma(Q)$ . Moreover, from the fact that  $A\xi = 0$  and h = 0, we deduce that N is flat (maximal number of parallel spinors) and  $\widetilde{M}$  is isometric to  $\mathbb{R} \times \mathbb{S}^n$ . Thus  $M \simeq \mathbb{S}^1 \times \mathbb{S}^n$ .
- The vector field ξ can be extended to a unique parallel vector field ξ̂ on N. It is indeed a solution of the boundary problem:

$$\left\{ \begin{array}{ll} \Delta^N \hat{\omega} = 0 & \text{on } N \\ \\ J^* \hat{\omega} = \omega, J^* (\delta^N \hat{\omega}) = 0 & \text{on } M. \end{array} \right.$$

The operator  $J^*$  is the restriction to the boundary.

- Let  $N_1$  be a connected integral submanifold of  $(\mathbb{R}\hat{\xi})^{\perp}$ . The manifold  $N_1$  is complete with  $\partial N_1$  is compact and totally umbilical in  $N_1$ .
- From the rigidity result in [M. Li, 2014], we deduce that N<sub>1</sub> is compact. Then from [S. Raulot, 2008] we get that ∂N<sub>1</sub> is connected and isometric to S<sup>n</sup>. Therefore N<sub>1</sub> ≃ B.
- Using the Brouwer fixed-point theorem, we finish the proof.  $\Box$

#### Corollary

Let  $(N^{n+2}, g)$  be a compact spin Riemannian manifold with non-negative scalar curvature. We assume that the boundary is isometric to  $\mathbb{S}^1 \times \mathbb{S}^n$  with mean curvature  $H \ge \frac{n}{n+1}$ . If the induced spin structure on M is the trivial one on  $\mathbb{S}^1 \times \mathbb{S}^n$ , then N is isometric to the product of  $\mathbb{S}^1$  with the unit ball.

More details in : Rigidity results for spin manifolds with foliated boundary, arxiv:1412.1339.